An improved stability criterion for a class of neutral differential equations

P.T. Nam ${ }^{\text {a }}$, V.N. Phat ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Quynhon University, 170 An Duong Vuong Road, Binhdinh, Viet Nam
${ }^{\mathrm{b}}$ Institute of Mathematics, 18 Hoang Quoc Viet Road, Hanoi, Viet Nam

ARTICLE INFO

Article history:

Received 16 October 2007
Accepted 27 November 2007

Keywords:

Asymptotical stability
Neutral differential equation
Lyapunov function
Linear matrix inequality

Abstract

This work gives an improved criterion for asymptotical stability of a class of neutral differential equations. By introducing a new Lyapunov functional, we avoid the use of the stability assumption on the main operators and derive a novel stability criterion given in terms of a LMI, which is less restricted than that given by Park [J.H. Park, Delay-dependent criterion for asymptotic stability of a class of neutral equations, Appl. Math. Lett. 17 (2004) 1203-1206] and Sun et al. [Y.G. Sun, L. Wang, Note on asymptotic stability of a class of neutral differential equations, Appl. Math. Lett. 19 (2006) 949-953].

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

We are concerned with the asymptotic stability of the following neutral differential equation:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}[x(t)+p x(t-\tau)]=-a x(t)+b \tanh x(t-\sigma), \quad t \geq 0 \tag{1.1}
\end{equation*}
$$

where a, τ and σ are positive constants, $\sigma \geq \tau, b, p$ are real numbers, $|p|<1$. For each solution $x(t)$ of Eq. (1.1), we assume the initial condition

$$
x(t)=\phi(t), \quad t \in[-\sigma, 0], \phi \in C([-\sigma, 0], R) .
$$

Recently, the asymptotic stability of neutral differential equation (1.1) has been discussed in [1,4,5]. Using stability assumption on the operator

$$
\mathcal{D}\left(x_{t}\right)=x(t)+p x(t-\tau)+b \int_{t-\sigma}^{t} \tanh x(s) \mathrm{d} s
$$

Park in [4] has proposed a delay-dependent criterion on σ for asymptotical stability of Eq. (1.1). Lately, constructing an improved Lyapunov function based on the operator

$$
\mathcal{D}^{*}\left(x_{t}\right)=x(t)+p x(t-\tau)+\alpha \int_{t-\tau}^{t} x(s) \mathrm{d} s+b \int_{t-\sigma}^{t} \tanh x(s) \mathrm{d} s,
$$

Sun et al. in [4] have derived a less conservative stability criterion. However, this condition still depends on the stability of the operator \mathscr{D}^{*}. Our aim is to improve these criteria and to break away from some of the assumptions of previous papers. Compared with the results in [4,5], our result has the following advantages:

[^0]0893-9659/\$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2007.11.006

- First, we introduce a new Lyapunov functional and avoid the use of the stability assumption on the operator \mathfrak{D} in [4] or \mathscr{D}^{*} in [5]. Hence, our criterion will be less restricted than [4,5] (see Example 2).
- Second, using the operator

$$
\mathscr{D}_{1}\left(x_{t}\right)=x(t)+p x(t-\tau)+\alpha \int_{t-\tau}^{t} x(s) \mathrm{d} s+b \int_{t-\sigma}^{t-\tau} \tanh x(s) \mathrm{d} s,
$$

the obtained condition depends not only on τ, but also on $\sigma-\tau$. Thus, our criterion is more effective than [5] (see Example 1).

2. Main result

Throughout this section, the symbol * represents the elements below the main diagonal of a symmetric matrix. Also, $X>Y$ means $X-Y$ is positive definite.

Before present the main result, we need the following technical lemmas.
Lemma 1 (Completing the Square). Assume that $S \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix. Then for every $Q \in \mathbb{R}^{n \times n}$,

$$
2\langle Q y, x\rangle \leq\left\langle Q S^{-1} Q^{T} x, x\right\rangle+\langle S y, y\rangle, \quad \forall x, y \in \mathbb{R}^{n} .
$$

Lemma 2 ([2]). For any symmetric positive definite matrix $M \in \mathbb{R}^{n \times n}$, scalar $\sigma \geq 0$ and vector function $w:[0, \sigma] \rightarrow \mathbb{R}^{n}$ such that the integrations concerned are well defined, then

$$
\left(\int_{0}^{\sigma} w(s) \mathrm{d} s\right)^{T} M\left(\int_{0}^{\sigma} w(s) \mathrm{d} s\right) \leq \sigma \int_{0}^{\sigma} w^{T}(s) M w(s) \mathrm{d} s
$$

For a real number α, Eq. (1.1) can be rewritten as follows:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[x(t)+p x(t-\tau)+\alpha \int_{t-\tau}^{t} x(s) \mathrm{d} s+b \int_{t-\sigma}^{t-\tau} \tanh x(s) \mathrm{d} s\right]=(\alpha-a) x(t)-\alpha x(t-\tau)+b \tanh x(t-\tau), \quad t \geq 0 \tag{2.1}
\end{equation*}
$$

Define the following operators:

$$
\mathscr{D}_{1}\left(x_{t}\right)=x(t)+p x(t-\tau)+\alpha \int_{t-\tau}^{t} x(s) \mathrm{d} s+b \int_{t-\sigma}^{t-\tau} \tanh x(s) \mathrm{d} s, \quad \mathscr{D}_{2}\left(x_{t}\right)=x(t)+p x(t-\tau) .
$$

Now, we have the following theorem.

Theorem 1. The zero solution of Eq. (1.1) is uniformly asymptotically stable if there exist a constant α with $0<|\alpha|<1$ and the positive scalars $\beta, \gamma, \eta, \theta$ such that the following linear matrix inequality holds:

$$
\Omega=\left(\begin{array}{ccccc}
\Omega_{11} & p(\alpha-a)-\alpha & b & \alpha-a & b(\alpha-a) \tag{2.2}\\
\star & -\beta-2 p \alpha & p b & -\alpha & -b \alpha \\
\star & \star & \theta(\sigma-\tau)^{2}-\eta & b & b^{2} \\
\star & \star & \star & -\gamma & 0 \\
\star & \star & \star & \star & -\theta
\end{array}\right)<0
$$

where $\Omega_{11}=2(\alpha-a)+\beta+\gamma \tau^{2}+\eta$.
Proof. Since $\Omega<0$, there is a number $\delta>0$ such that

$$
\Omega_{1}=\left(\begin{array}{ccccc}
\Omega_{11} & p(\alpha-a)-\alpha & b & \alpha-a & b(\alpha-a) \tag{2.3}\\
\star & -\beta-2 p \alpha & p b & -\alpha & -b \alpha \\
\star & \star & \theta(\sigma-\tau)^{2}-\eta+\delta & b & b^{2} \\
\star & \star & \star & -\gamma & 0 \\
\star & \star & \star & \star & -\theta
\end{array}\right)<0 .
$$

Consider the following Lyapunov functional:

$$
V=V_{1}+V_{2}+V_{3}+V_{4}+V_{5}+V_{6}+V_{7},
$$

where $V_{1}=\mathscr{D}_{1}^{T}\left(x_{t}\right) \mathcal{D}_{1}\left(x_{t}\right), V_{2}=\beta \int_{t-\tau}^{t} x^{2}(s) \mathrm{d} s, V_{3}=\gamma \tau \int_{t-\tau}^{t}(\tau-t+s)(\alpha x(s))^{2} \mathrm{~d} s, V_{4}=\theta(\sigma-\tau) \int_{t-\sigma}^{t-\tau}(s-t+\sigma) \tanh ^{2} x(s) \mathrm{d} s$, $V_{5}=\eta \int_{t-\tau}^{t} \tanh ^{2} x(s) \mathrm{ds}, V_{6}=\delta \int_{t-\sigma}^{t-\tau} \tanh ^{2} x(s) \mathrm{d} s V_{7}=\epsilon \mathscr{D}_{2}^{2}\left(x_{t}\right), \epsilon$ is a positive number that will be chosen later.

https://daneshyari.com/en/article/1709400

Download Persian Version:
https://daneshyari.com/article/1709400

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: vnphat@math.ac.vn (V.N. Phat).

