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Abstract

In this work the period-doubling bifurcation of a discrete metapopulation with delay in the dispersion terms is discussed. By
using the central manifold method, the period-doubling bifurcation can be analyzed from the viewpoint of the dynamical system.
Intensive simulation on this model shows the dynamics of the metapopulation is similar to that of a single logistic model as the
bifurcation parameter µ increases when 0 ≤ b < 1/2, where b is the dispersion parameter.
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1. Introduction

Metapopulation is an important concept in several ecological fields, including population ecology, landscape
ecology, and conservation biology, which provides a theoretical framework for studying spatially structured
populations. There have been many studies on metapopulations using continuous time models; see [5–8]. But in
the context of the discrete models, there are relatively few contributions in the literature. Recently, Gyllenberg
et al. [3] considered a two-patch discrete time metapopulation model of coupled logistic difference equations and
gave a characterization of the fixed point and 2-periodic orbits. Yakubu and Castillo-Chavez [9] studied a more
general metapopulation model over N patches. The effects of synchronous dispersal on discrete time metapopulation
dynamics with local (patch) dynamics of the same (compensatory or overcompensatory) or mixed (compensatory and
overcompensatory) types are explored in [9]. More recently, Huang and Zou [4] proposed the following model system:{

x(n + 1) = µx(n)(1 − x(n)) + d2 y(n − k2) − d1x(n − k1),

y(n + 1) = νy(n)(1 − y(n)) + d1x(n − k1) − d2 y(n − k2)
(1)
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where d1, d2 ≥ 0 represent the dispersion rate, 0 < µ, ν < 4 represent the growth rate, and 0 ≤ x(n), y(n) < 1
represent the population density of each subpopulation after n generations. The model carries a delay in the dispersion
terms to account for long distance dispersion. Only a special case of (1): k1 = k2 = 1 and d1 = d2 = b (meaning
symmetric dispersal) is considered, and the impact of the dispersion on the global dynamics of the metapopulation is
obtained in [4]. It is very hard and challenging work to study system (1) directly either in theory or in simulation. In
order to avoid the important biological features from being hidden behind the complexity caused by high dimensions
and multiparameter, Zeng et al. in [10] just discuss Hopf bifurcation of a special case of (1): k1 = k2 = 1, ν = µ and
d1 = d2 = b, that is, the following model system:{

x(n + 1) = µx(n)(1 − x(n)) + b[y(n − 1) − x(n − 1)],

y(n + 1) = µy(n)(1 − y(n)) + b[x(n − 1) − y(n − 1)].
(2)

In this work, we will deal with the period-doubling bifurcation of this model. Note that when b = 0, there is no
coupling and each subpopulation in (2) is governed by a well known discrete logistic equation of the form

u(n + 1) = µu(n)(1 − u(n)). (3)

This one-dimensional dynamical system has been studied extensively and its dynamics, such as the period-doubling
process from a stable 2n−1-periodic orbit to a stable 2n-periodic orbit and a route to chaos as the parameter µ increases
in [1], is well understood. Comparing our results for (2) with that for (3), we find that when 0 < b < 1/2 the dynamics
of (2) is similar to that of (3), but the period-doubling bifurcation cascade for (2) occurs earlier than that for the system
(3). We can analytically prove that there exist period-doubling bifurcations at the positive fixed point and 2-periodic
orbit of (2) when 0 ≤ b < 1/2. By simulation, we also make a conjecture that the system (2) undergoes a cascade of
period-doubling bifurcation and finally becomes chaotic as µ increases if 0 ≤ b < 1/2. From the ecology viewpoint,
when µ is increased, each subpopulation will oscillate in cycles of period 2n (where n increases from 1 to infinity),
and finally vary randomly and boundedly.

The rest of this work is organized as follows. Section 2 reviews some known results on the model (2). Section 3 is
devoted to our main results. By using a change of coordinates and the central manifold method, the first period-
doubling bifurcation and the second period-doubling bifurcation of (2) are analyzed in Section 3. Finally, some
discussions and conjectures are given in Section 4.

2. Preliminaries

In this section, we first review some results about the model (2); for details, see [4,10]. We only consider the
nonnegative solutions of (2) from the viewpoint of ecology, i.e. x(n), y(n) ≥ 0 for any integer n. When b = 0, the
dynamics of (2) is determined by the one-dimensional logistic equation (3). It is well known that the logistic equation
undergoes a period-doubling cascade as µ increases, that is, there exists a sequence µ0 = 1 < µ1 = 3 < µ2 =

1 +
√

6 < µ3 < · · · < µn < · · · < µ∞ ≈ 3.56994 such that when µ ∈ (µn, µn+1), n = 0, 1, 2, . . . , (3) has a unique
stable 2n-periodic orbit.

For µ ∈ (µn, µn+1), let {ui , i = 1, 2, . . . , 2n
} be the corresponding stable 2n-periodic orbit of the logistic equation

(3). Then {(ui , ui ), i = 1, 2, . . . , 2n
} is a 2n-periodic orbit of (2) for any b > 0. Letting

w1(n) =
x(n) + y(n)

2
, w2(n) =

x(n − 1) − y(n − 1)

2
, w3(n) =

x(n) − y(n)

2
,

we can rewrite the difference system (2) as the three-dimensional discrete dynamical systemw1(n + 1)

w2(n + 1)

w3(n + 1)

 =

 µ(w1(n) − w1(n)2
− w3(n)2)

w3(n)

µ(w3(n) − 2w1(n)w3(n)) − 2bw2(n)

 , G

w1(n)

w2(n)

w3(n)

 . (4)

Since the dynamics of the system (2) is qualitatively the same as that of the system (4), we only need to analyze the
system (4) qualitatively. By the above transformation, the 2n-periodic orbit {(ui , ui ), i = 1, 2, . . . , 2n

} of the system
(2) is transformed to the 2n-periodic orbit {W i

2n , i = 1, 2, . . . , 2n
} of the system (4), where W i

2n = (ui , 0, 0)T . By a
simple computation, one can obtain the positive fixed point W 1

1 = (1 −
1
µ
, 0, 0)T , µ > µ0 and the 2-periodic orbit

{W i
2 = (ui , 0, 0)T , i = 1, 2}, µ > µ1, where
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