Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

On certain subclasses of analytic functions associated with hypergeometric functions

G. Murugusundaramoorthy^{a,*}, N. Magesh^b

^a School of Advanced Sciences, VIT University, Vellore - 632014, Tamilnadu, India
^b Department of Mathematics, Government Arts College (Men), Krishnagiri - 635001, Tamilnadu, India

ARTICLE INFO

Article history: Received 17 May 2010 Received in revised form 26 October 2010 Accepted 28 October 2010

Keywords: Univalent Starlike Convex Uniformly starlike functions Uniformly convex functions Guassian hypergeometric functions

1. Introduction

Let A denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

which are analytic and univalent in the open disc $U = \{z : z \in C | z| < 1\}$. A function $f \in A$ is called *starlike of order* α $(0 \le \alpha < 1)$ if and only if $\Re(\frac{zf'(z)}{f(z)}) > \alpha$ $(z \in U)$. A function $f \in A$ is called *convex of order* α $(0 \le \alpha < 1)$ if and only if $\Re(\frac{zf'(z)}{f(z)}) > \alpha$ $(z \in U)$. We denote the class of all starlike functions of order α by $S^*(\alpha)$ and the class convex functions of order α by $K(\alpha)$. Denote by T the subclass of A consisting of functions of the form

$$f(z) = z - \sum_{n=2}^{\infty} |a_n| z^n, \quad z \in U,$$
 (1.2)

 $T^*(\alpha)$ and $C(\alpha)$ are the class of starlike and convex functions of order α ($0 \le \alpha < 1$), introduced and studied by Silverman [1].

The class β -UCV was introduced by Kanas and Wisniowska [2], where its geometric definition and connections with the conic domains were considered. The class β -UCV was defined pure geometrically as a subclass of univalent functions, that map each circular arc contained in the unit disk U with a center ξ , $|\xi| \leq \beta$ ($0 \leq \beta < 1$), onto a convex arc. The notion of

* Corresponding author. E-mail addresses: gmsmoorthy@yahoo.com, gmsmoorthi@rediffmail.com (G. Murugusundaramoorthy), nmagi_2000@yahoo.co.in (N. Magesh).

ABSTRACT

In this paper, we find the necessary and sufficient conditions for functions zF(a, b; c; z) in the generalized class of β uniformly starlike and β uniformly convex functions of order α and also consequences of the results are pointed out.

© 2010 Elsevier Ltd. All rights reserved.

^{0893-9659/\$ –} see front matter 0 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2010.10.048

 β -uniformly convex function is a natural extension of the classical convexity. Observe that, if $\beta = 0$ then the center ξ is the origin and the class β -UCV reduces to the class of convex univalent functions *K*. Moreover for $\beta = 1$ corresponds to the class of uniformly convex functions UCV introduced by Goodman [3,4], and studied extensively by Rønning [5,6]. The class β -S_P is related to the class β -UCV by means of the well-known Alexander equivalence between the usual classes of convex *K* and starlike S^{*} functions. Further the analytic criterion for functions in these classes is given as below.

For $-1 < \alpha < 1$ and $\beta > 0$ a function $f \in A$ is said to be in the class

(i) β -uniformly starlike functions of order α is denoted by $S_P(\alpha, \beta)$ if it satisfies the condition

$$\Re\left(\frac{zf'(z)}{f(z)} - \alpha\right) > \beta \left|\frac{zf'(z)}{f(z)} - 1\right|, \quad z \in U$$
(1.3)

and

(ii) β -uniformly convex functions of order α is denoted by $UCV(\alpha, \beta)$, if it satisfies the condition

$$\Re\left(1+\frac{zf''(z)}{f'(z)}-\alpha\right)>\beta\left|\frac{zf''(z)}{f'(z)}\right|,\quad z\in U.$$
(1.4)

Indeed it follows from (1.3) and (1.4) that

$$f \in UCV(\alpha, \beta) \Leftrightarrow zf' \in S_P(\alpha, \beta).$$
(1.5)

Remark 1.1. It is of interest to state that $UCV(\alpha, 0) = K(\alpha)$ and $S_P(\alpha, 0) = S^*(\alpha)$

Motivated by above definitions we define the following subclasses of A.

For $0 \le \lambda < 1$, $0 \le \alpha < 1$ and $\beta \ge 0$, we let $S_P(\lambda, \alpha, \beta)$ be the subclass of A consisting of functions of the form (1.1) and satisfying the analytic criterion

$$\operatorname{Re}\left\{\frac{zf'(z)}{(1-\lambda)f(z)+\lambda zf'(z)}-\alpha\right\} > \beta \left|\frac{zf'(z)}{(1-\lambda)f(z)+\lambda zf'(z)}-1\right|, \quad z \in U,$$
(1.6)

and also, let $UCV(\lambda, \alpha, \beta)$ be the subclass of A consisting of functions of the form (1.1) and satisfying the analytic criterion

$$\operatorname{Re}\left\{\frac{f'(z) + zf''(z)}{f'(z) + \lambda zf''(z)} - \alpha\right\} > \beta \left|\frac{f'(z) + zf''(z)}{f'(z) + \lambda zf''(z)} - 1\right|, \quad z \in U.$$

$$(1.7)$$

We further let $TS_P(\lambda, \alpha, \beta) = S_P(\lambda, \alpha, \beta) \cap T$ and $UCT(\lambda, \alpha, \beta) = UCV(\lambda, \alpha, \beta) \cap T$. Suitably specializing the parameters we note that

- (1) $TS_P(0, \alpha, \beta) = TS_P(\alpha, \beta)$ [7] (2) $TS_P(0, 0, \beta) = TS_P(\beta)$ [8] (3) $TS_P(0, \alpha, 1) = TS_P(\alpha)$ [7] (4) $TS_P(\lambda, \alpha, 0) = T^*(\lambda, \alpha)$ [9] (5) $TS_P(0, \alpha, 0) = T^*(\alpha)$ [1] (6) $UCT(0, \alpha, \beta) = UCT(\alpha, \beta)$ [7] (7) $UCT(0, 0, \beta) = UCT(\beta)$ [10] (8) $UCT(0, \alpha, 1) = UCT(\alpha)$ [7] (9) $UCT(\lambda, \alpha, 0) = C(\lambda, \alpha)$ [9]
- (10) $UCT(0, \alpha, 0) = C(\alpha)$ [1].

We recall the Gaussian hypergeometric function F(a, b; c; z) defined by

$$F(a, b; c; z) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n} \frac{z^n}{(1)_n},$$
(1.8)

where $a, b, c \in \mathbb{C}$ with $c \neq 0, -1, -2, ...$ and $(a)_n$ is the Pochhammer symbol defined in terms of the Gamma functions, by

$$(a)_n = \frac{\Gamma(a+n)}{\Gamma(a)} = \begin{cases} 1 & n=0\\ a(a+1)(a+2)\dots(a+n-1), & n\in N \end{cases}.$$
(1.9)

It is known that

$$F(a, b; c; 1) = \frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)}, \quad Re(c - a - b) > 0$$
(1.10)

and the function F(a, b; c; 1) converges if Re(c - a - b) > 0.

Carlson and Schaffer [11] studied the class of starlike functions and pre starlike functions involving hypergeometric functions. In 1993, Silverman [12] gave necessary and sufficient conditions for zF(a, b; c; z) to be in $T^*(\alpha)$ and $C(\alpha)$. Motivated by Silverman [12], Swaminathan [13] and Mostafa [14] in this paper, we find the necessary and sufficient conditions for zF(a, b; c; z) to be in $TS_P(\lambda, \alpha, \beta)$ and $UCT(\lambda, \alpha, \beta)$ when $f \in TS_P(\lambda, \alpha, \beta)$ and $f \in UCT(\lambda, \alpha, \beta)$ respectively for a given a, b, c such that Re(c - a - b) > 0. Download English Version:

https://daneshyari.com/en/article/1709463

Download Persian Version:

https://daneshyari.com/article/1709463

Daneshyari.com