Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

General fractional *f*-factor numbers of graphs

Hongliang Lu^{a,*}, Qinglin Yu^{b,c}

^a Department of Mathematics, Xi'an Jiaotong University, Xi'an 710049, PR China

^b School of Mathematics, Shandong University, Jinan, Shandong, PR China

^c Department of Mathematics and Statistics, Thompson Rivers University, Kamloops, BC, Canada

ARTICLE INFO

Article history: Received 30 September 2009 Received in revised form 31 October 2010 Accepted 2 November 2010

Keywords: Fractional matching f-factor Fractional number Deficiency Alternating trail

1. Introduction

ABSTRACT

Let *G* be a graph and *f* an integer-valued function on *V*(*G*). Let *h* be a function that assigns each edge to a number in [0, 1], such that the *f*-fractional number of *G* is the supremum of $\sum_{e \in E(G)} h(e)$ over all fractional functions *h* satisfying $\sum_{e \sim v} h(e) \leq f(v)$ for every vertex $v \in$ *V*(*G*). An *f*-fractional factor is a spanning subgraph such that $\sum_{v \sim e} h(e) = f(v)$ for every vertex *v*. In this work, we provide a new formula for computing the fractional numbers by using Lovász's Structure Theorem. This formula generalizes the formula given in [Y. Liu, *G.Z.* Liu, The fractional matching numbers of graphs, Networks 40 (2002) 228–231] for the fractional matching numbers.

© 2010 Elsevier Ltd. All rights reserved.

Applied Mathematics Letters

All graphs considered in this work will be simple finite undirected graphs. Let G = (V(G), E(G)) be a graph, where V(G) and E(G) denote the vertex set and edge set of G, respectively. We use $d_G(x)$ for the degree of a vertex x in G. For any $S \subseteq V(G)$, the subgraph of G induced by S is denoted by G[S]. We write G - S for G[V(G) - S]. We refer the reader to [1] for standard graph theoretic terms not defined here.

Let *f* and *g* be two nonnegative integer-valued functions on *V*(*G*) such that $g(x) \le f(x)$ for every vertex $x \in V(G)$. A spanning subgraph *F* of *G* is a (g, f)-factor if $g(v) \le d_F(v) \le f(v)$ for all $v \in V(G)$. If $f \equiv g$, then a (g, f)-factor is also called as an *f*-factor. In 1970, Lovász [2] gave a canonical decomposition of *V*(*G*) according to its (g, f)-optimal subgraphs. In this work, we only consider $g \equiv f$.

Define $f(S) = \sum_{x \in S} f(x)$. Let def(G) be the *deficiency* of *G* with respect to an integer-valued function *f* and be defined as

$$def(G) = \min_{H \subseteq G} \left\{ \sum_{x \in V(H)} |f(x) - d_H(x)| \right\},\$$

where *H* is a spanning subgraph of *G*. A subgraph *H* of *G* is called *f*-optimal if def(G) = def(H). Let *M* be an *f*-optimal subgraph; we call |E(M)| the *f*-factor number and denote it by $\mu(G)$. In particular, if $f \equiv 1$, it is usually referred to as the *matching number*. Let A(G), B(G), C(G), D(G) be defined as in Lovász's Structure Theorem (refer to [1]) and for simplicity, denote them by *A*, *B*, *C*, *D*, respectively. Then

 $C(G) = \{v \in V(G) \mid d_H(v) = f(v) \text{ for every } f\text{-optimal subgraph } H\},\$ $A(G) = \{v \in V(G) - C(G) \mid d_H(v) \ge f(v) \text{ for every } f\text{-optimal subgraph } H\},\$

* Corresponding author.

E-mail address: luhongliang215@sina.com (H. Lu).

^{0893-9659/\$ –} see front matter s 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2010.11.005

$$B(G) = \{v \in V(G) - C(G) \mid d_H(v) \le f(v) \text{ for every } f \text{-optimal subgraph } H\},\$$

$$D(G) = V(G) - A(G) - B(G) - C(G).$$

Let $G[D] = D_1 \cup \cdots \cup D_{\tau}$. Let M be a subgraph such that $d_M(v) \leq f(v)$ for all $v \in A(G)$. For a component D_i of G[D], we refer to D_i as M-full if either M contains an edge of $E(D_i, A(G))$ or M misses an edge of $E(V(D_i), B)$; otherwise, D_i is M-near full. For any f-optimal subgraph M of G, where $d_M(v) \leq f(v)$ for all $v \in A(G)$, the number of nontrivial components of G[D] which are M-near full is denoted by nc(M). Let $nc(G) = \max\{nc(M)\}$, where the maximum is taken over all f-optimal graph M of G with $d_M(v) \leq f(v)$ for all $v \in A(G)$. We describe a graph H as f-critical if H contains no f-factors, but for any fixed vertex x of V(H), there exists a subgraph K of H such that $d_K(x) = f(x) \pm 1$ and $d_K(y) = f(y)$ for any vertex $y (y \neq x)$.

Let *h* be a function defined on E(G) such that $h(e) \in [0, 1]$ for every $e \in E(G)$ and the *f*-fractional number of *G* is the supremum of $\sum_{e \in E(G)} h(e)$ over all fractional functions *h* satisfying $\sum_{e \sim v} h(e) \leq f(v)$ for each *v*. We denote the *f*-fractional number by $\mu_f(G)$. Let $E_v = \{e \mid e \sim v\}$ and $E^h = \{e \mid e \in E(G) \text{ and } h(e) \neq 0\}$. We call *h* a fractional *f*-indicator function of *G* if $h(E_v) = f(v)$ for each $v \in V(G)$. If *H* is a spanning subgraph of *G* such that $E(H) = E^h$, then *H* is called a fractional *f*-factor of *G* with indicator function *h*, or simply a fractional *f*-factor. Let $def_f(G)$ be the deficiency of the fractional *f*-factor of *G*, and be defined as

$$def_f(G) = \min\left\{\sum_{v \in V(G)} \left(\left| \sum_{e \in E_v} h(e) - f(v) \right| \right) \mid h \text{ is a function defined on } E(G) \text{ such that} \\ h(e) \in [0, 1] \text{ for every } e \in E(G) \right\}.$$

In this work, we investigate the relationship between the f-factor number and the fractional f-factor number, provide a new formula for computing the fractional numbers by using Lovász's Structure Theorem, and generalize the formula for the fractional matching number given in [3]. By the definition, clearly

$$\mu_f(G) = \frac{1}{2}(f(V(G)) - def_f(G))$$

Let f_S be a function on V(G-S) such that $f_S(v) = f(v) - |E(v, S)|$ and f_S^T is the restriction of f_S on the subgraph T of G-S. Given an arbitrary f-optimal subgraph F, let $de_{f_F}(T)$ denote the deficiency of subset V(T) with respect to the f-factors.

Theorem 1.1 (Lovász's Structure Theorem). Let D(G), A(G), B(G) and C(G) be defined as above. Let F be an f-optimal subgraph. Then

- (i) every component D_i of G[D] is $f_B^{D_i}$ -critical;
- (ii) for every component D_i of G[D], $def_F(D_i) \le 1$;
- (iii) $d_F(v) \in \{f(v), f(v) 1, f(v) + 1\}$ if $v \in D$; $d_F(v) \le f(v)$ if $v \in B$; $d_F(v) \ge f(v)$ if $v \in A$;

(iv) $def(G) = def(F) = f(B) + \tau - f(A) - \sum_{v \in B} d_{G-A}(v)$, where τ denotes the number of components of G[D].

Lu and Yu [4] gave a different interpretation of A(G), B(G), C(G), D(G) by using alternating trails and thus obtained a shorter proof of Lovász's Structure Theorem. Suppose that F is an f-optimal subgraph, where $d_F(v) \le f(v)$ for all $v \in A(G)$, and let $B_0 = \{v \mid d_F(v) < f(v)\}$. An *M*-alternating trail is a trail $P = v_0v_1 \dots v_k$ with $v_iv_{i+1} \notin F$ for i even and $v_iv_{i+1} \in F$ for i odd. Then we can define A, B, C, D alternatively as follows:

 $D = \{v \mid \exists \text{ both an even and an odd } F \text{-alternating trail from vertices of } B_0 \text{ to } v\},\$

- $B = \{v \mid \exists \text{ an even } F \text{-alternating trail from a vertex of } B_0 \text{ to } v\} D$,
- $A = \{v \mid \exists an odd F \text{-alternating trail from a vertex of } B_0 \text{ to } v\} D,$
- C = V(G) A B D.

With these new notions, more structural properties of *f*-optimal subgraphs can be obtained.

Theorem 1.2 (Lu and Yu [4]). Let D(G), A(G), B(G) and C(G) be defined as above. Let F be an arbitrary f-optimal subgraph of G. Then

- (i) for every component D_i of G[D], if $def(D_i) = 0$, then F either contains an edge of $E(D_i, A)$ or misses an edge of $E(D_i, B)$; if $def(D_i) = 1$, then $E(D_i, B) \subseteq F$ and $E(D_i, A) \cap F = \emptyset$;
- (ii) if $d_F(v) \le f(v)$ for all $v \in V(G)$, then for any $v \in D$ there are both an even *F*-alternating trail and an odd *F*-alternating trail from the vertices of B_0 to v.

Anstee [5] obtained a formula for the fractional *f*-factor number.

Download English Version:

https://daneshyari.com/en/article/1709468

Download Persian Version:

https://daneshyari.com/article/1709468

Daneshyari.com