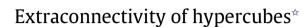
Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml



Weihua Yang, Jixiang Meng*

College of Mathematics and System Science, Xinjiang University, Urumqi 830046, China

ARTICLE INFO

Article history: Received 8 July 2008 Accepted 8 July 2008

Keywords: Interconnection networks Hypercubes Extraconnectivity

1. Introduction

ABSTRACT

Given a graph *G* and a non-negative integer *g*, the *g*-extraconnectivity of *G* (written $\kappa_g(G)$) is the minimum cardinality of a set of vertices of *G*, if it exists, whose deletion disconnects *G*, and where every remaining component has more than *g* vertices. The usual connectivity and superconnectivity of *G* correspond to $\kappa_0(G)$ and $\kappa_1(G)$, respectively. In this work, we determine $\kappa_g(Q_n)$ for $0 \le g \le n, n \ge 4$, where Q_n denotes the *n*-dimensional hypercube. © 2008 Elsevier Ltd. All rights reserved.

Applied Mathematics

Letters

It is well known that the topology of an interconnected network is often modeled by a connected graph of communication links. In the network the connectivity $\kappa(G)$ is an important factor determining the reliability and fault tolerance of the network. Here, we consider the extraconnectivity, which was defined by Fabrega and Fiol [2]. The extraconnectivity corresponds to a kind of conditional connectivity introduced by Harary [3].

Let *G* be a connected undirected graph, and \mathcal{P} a graph-theoretic property. Harary [3] defined the conditional connectivity $\kappa(G; \mathcal{P})$ as the minimum cardinality of a set of vertices, if it exists, whose deletion disconnects *G* and where every remaining component has property \mathcal{P} . Let *g* be a non-negative integer and let \mathcal{P}_g be the property of having more than *g* vertices. Fàbrega and Fiol [2] defined the *g*-extraconnectivity $\kappa_g(G)$ of *G* as $\kappa(G; \mathcal{P})$.

Hypercubes are used as fundamental models for computer networks. There are many research articles on hypercubes (see, for example [4–8]). An *n*-dimensional hypercube is an undirected graph $Q_n = (V, E)$ with $|V| = 2^n$ and $|E| = n2^{n-1}$. Each vertex can be represented by an *n*-bit binary string. There is an edge between two vertices whenever their binary string representation differs in only one bit position. It is known that $\kappa_0(Q_n) = \kappa(Q_n) = n$, $\kappa_1(Q_n) = 2n - 2$ for $n \ge 3$ and $\kappa_2(G) = 3n - 5$ for $n \ge 6$ (see [4,8]). In this work, we show that $\kappa_g(G) = (g + 1)n - 2g - {g \choose 2}$ when $0 \le g \le n - 4$ and $\kappa_g(G) = \frac{n(n-1)}{2}$ when $n - 3 \le g \le n$ for $n \ge 4$. Following Latifi [5], we express Q_n as $D_0 \odot D_1$, where D_0 and D_1 are the two (n - 1)-subcubes of Q_n induced by the vertices with the *i*th coordinates 0 and 1 respectively. Sometimes we use $X^{i-1}0X^{n-i}$ and $X^{i-1}1X^{n-i}$ to denote D_0 and D_1 , where $X \in Z_2$. Clearly, the vertex v in one (n - 1)-subcube has exactly one neighbor v' in another (n - 1)-subcube; we call v' the *out neighbor* of v. Let $A \subseteq G$, $v \in V(G)$. We use $N_G(v)$ to denote the set of the neighbors of v in G, $N_G(A)$ to denote the set $(\bigcup_{v \in V(A)} N_G(v)) \setminus V(A)$, $C_G(A)$ to denote the set $N_G(A) \cup V(A)$. We follow Bondy [1] for terminologies not given here.

2. Preliminaries

Before discussing the $\kappa_g(Q_n)$, We give the following lemmas.

The research was supported by NSFC (No. 10671165) and SRFDP (No. 20050755001).
Corresponding author.

E-mail addresses: ywh222@163.com (W. Yang), mjx@xju.edu.cn (J. Meng).

^{0893-9659/\$ –} see front matter 0 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2008.07.016

Lemma 2.1. Let A be a subgraph of Q_n with |V(A)| = g + 1 for $n \ge 4$. Then $|N_{O_n}(A)| \ge (g + 1)n - 2g - \binom{g}{2}$.

Proof. By induction on |V(A)|. Clearly, the result holds for |V(A)| = 1. Assume that the result holds for all A with |V(A)| < h. Next we show that the result is true for A with |V(A)| = h + 1. We directly use g + 1 instead of h + 1.

We first show that Q_n can be decomposed into D_0 and D_1 such that $D_0 \cap A = A_0$ and $D_1 \cap A = A_1$ with $V(A_0) \neq \emptyset$ and $V(A_1) \neq \emptyset$. Since $g \ge 1$, $|V(A)| \ge 2$. Let $x = x_1x_2 \cdots x_i \cdots x_n$ and $y = y_1y_2 \cdots y_i \cdots y_n$ be two distinct vertices of A; without loss of generality, assume $x_i = 0$ and $y_i = 1$ for an integer i. Let $D_0 = X^{i-1}0X^{n-i}$, $D_1 = X^{i-1}1X^{n-i}$. Then $x \in V(D_0), y \in V(D_1)$, and thus $V(A_0) \neq \emptyset, V(A_1) \neq \emptyset$.

Assume $|V(A_0)| = N$, $1 \le N \le g$. By the induction hypothesis, we have $|N_{D_0}(A_0)| \ge N(n-1) - 2(N-1) - {N-1 \choose 2}$ and $|N_{D_1}(A_1)| \ge (g+1-N)(n-1) - 2(g-N) - {g-N \choose 2}$. Since $N_{Q_n}(A) = N_{D_0}(A_0) \cup N_{D_1}(A_0) \cup N_{D_1}(A_1) \cup N_{D_0}(A_1)$ and $N_{D_0}(A_0) \cap N_{D_1}(A_1) = \emptyset$, we have $|N_{Q_n}(A)| \ge |N_{D_0}(A_0)| + |N_{D_1}(A_1)|$. Obviously, $|N_{D_0}(A_0)| + |N_{D_1}(A_1)| - [(g+1)n - 2g - {g \choose 2}] \ge 1$ $N(n-1) - 2(N-1) - {\binom{N-1}{2}} + (g+1-N)(n-1) - 2(g-N) - 2{\binom{g-N}{2}} - [(g+1)n - 2g - {\binom{g}{2}}] = -N^2 + (g+1)N - g.$ It is easy to see that $f(N) = -N^2 + (g+1)N - g$ is increasing in N when $1 \le N \le \frac{g+1}{2}$ and decreasing in N when $\frac{g+1}{2} \le N \le g$, and f(1) = f(g) = 0. Thus $|N_{D_0}(A_0)| + |N_{D_1}(A_1)| \ge (g+1)n - 2g - {g \choose 2}$ for $1 \le N \le g$. \Box

Remark 2.2. Note that $h_n(g) = (g+1)n - 2g - {g \choose 2}$ is increasing when $g \le n-2$, the maximum of $h_n(g)$ is $h_n(n-2) = (g+1)n - 2g - {g \choose 2}$ $(n-1)n-2(n-2) - \binom{n-2}{2} = h_n(n-1) = n^2 - 2(n-1) - \binom{n-1}{2} \text{ and } h_n(n-1) = h_n(n-2) > h_n(n) > (g+1)n - 2g - \binom{g}{2}$ for $0 \le g \le n-4$. In particular, $h_{n-1}(g_1) + h_{n-1}(g_2) > h_n(g) + 1$ when $0 \le g_1, g_2 \le n-1$ and $g_1 + 1 + g_2 + 1 > g + 1$.

Lemma 2.3. Let $Q_n = D_0 \odot D_1$ and let F be a vertex cutset of Q_n . Suppose B is a subgraph of D_1 consisting of some components of $Q_n - F$. If $|V(B)| \ge g + 1$, then $|F| \ge (g + 1)n - 2g - {g \choose 2}$.

Proof. Let *B* be the subgraph that satisfies the conditions of this lemma. Assume T_B is a subgraph of *B* such that $|V(T_B)| =$ g + 1. By Lemma 2.1, we have $|N_{D_1}(T_B)| \ge (g + 1)(n - 1) - 2g - {g \choose 2}$. Since B is disconnected with D_0 , that is, for each $v \in N_{D_1}(T_B)$, at least one of v and its out neighbor v' is in F, we thus have $|F| \ge |N_{D_1}(T_B)| + |V(T_B)| \ge (g+1)n - 2g - {g \choose 2}$. \Box

Lemma 2.4. Assume $n \ge 4$, $B \subseteq Q_n$ and $|V(B)| \ge n$. If $|V(Q_n) \setminus C_{Q_n}(B)| \ge n$, then $|N_{Q_n}(B)| > (n-3)n - 2(n-4) - \binom{n-4}{2} + 1$.

Proof. By induction. Let $B \subseteq Q_n$, $|V(B)| \ge n$ and $|V(Q_n) \setminus C_{Q_n}(B)| \ge n$. For n = 4, we have $4 \le |V(B)| \le 5$. The result follows directly by Lemma 2.1. Assume that the result holds for all n < M. We show that the result is true for n = M.

Suppose $|N_{Q_n}(B)| \le (n-3)n - 2(n-4) - {\binom{n-4}{2}} + 1$. We shall derive a contradiction. Let $F = N_{Q_n}(B)$, $F_0 = F \cap V(D_0)$ and $F_1 = F \cap V(D_1)$. Then either $|F_0| \le \frac{(n-3)n - 2(n-4) - {\binom{n-4}{2}} + 1}{2}$ or $|F_1| \le \frac{(n-3)n - 2(n-4) - {\binom{n-4}{2}} + 1}{2}$. Without loss of generality,

we assume $|F_0| \le \frac{(n-3)n-2(n-4)-\binom{n-4}{2}+1}{2}$.

Assume that G_1, G_2, \ldots, G_s are all components of $D_0 - F_0$ such that $|V(G_i)| < \frac{n-3}{2}$ and use G^* to denote $D_0 - (F \cup V(G_1 \cup G_2))$ $\cdots \cup G_s)).$

Claim 1.
$$\sum_{i=1}^{s} |V(G_i)| < \frac{n-3}{2}$$
.

Observe that
$$\binom{n-3}{2}n-2\binom{n-3}{2}-1-\binom{n-3}{2}-1>\frac{(n-3)n-2(n-4)-\binom{n-4}{2}+1}{2}$$
 when *n* is odd and $\binom{n-2}{2}n-2\binom{n-2}{2}-1-\binom{n-2}{2}-1>\frac{(n-3)n-2(n-4)-\binom{n-4}{2}+1}{2}$

 $\lfloor \frac{\binom{(n-3)n-2(n-4)-\binom{n-4}{2}+1}{2}}{2} \rfloor \text{ when } n \text{ is even. By Lemma 2.1, } D_0 - F_0 \text{ contains no component } A_0 \text{ such that } \frac{n-3}{2} \leq |V(A_0)| \leq n.$ Now we show that $\sum_{i=1}^{s} |V(G_i)| < \frac{n-3}{2}$. If $\frac{n-3}{2} \leq \sum_{i=1}^{s} |V(G_i)| \leq n$, by Lemma 2.1, we have $|N_{D_0}(G_1 \cup \cdots \cup G_s)| > |F_0|$, a contradiction. If $\sum_{i=1}^{s} |V(G_i)| \geq n$, since $|V(G_i)| < \frac{n-3}{2}$, $i = 1, \dots, s$, we can find a subgraph *S* consisting of some G_i such that $\frac{n-3}{2} \leq |V(S)| \leq n$. Clearly, $|N_{D_0}(S)| > |F_0|$, a contradiction. Thus $\sum_{i=1}^{s} |V(G_i)| < \frac{n-3}{2}$.

Claim 2. G* is connected.

Since $|V(D_0) \setminus (F_0 \cup (V(G_1 \cup \cdots \cup G_s)))| > 2^{n-1} - |F_0| - \frac{n-3}{2} > 0$ for $n \ge 4$, thus $V(G^*) \ne \emptyset$. Suppose G^* is disconnected, then every component of G^* has order at least n. By induction, we have $|F_0 \cup V(G_1 \cup \cdots \cup G_s)| > 0$.

$$(n-4)(n-1) - 2(n-5) - \binom{n-5}{2} + 1. \text{ However, } |F_0 \cup V(G_1 \cup \dots \cup G_s)| < |F_0| + \frac{n-3}{2} \le \lfloor \frac{(n-3)n-2(n-4) - \binom{n-4}{2} + 1}{2} \rfloor + \frac{n-3}{2} \le (n-4)(n-1) - 2(n-5) - \binom{n-5}{2} + 1 \text{ for } n \ge 5, \text{ a contradiction. Thus } G^* \text{ is connected.}$$

Assume that $\sum_{i=1}^{s} |V(G_i)| = N$ and C_1, C_2, \ldots, C_m are all components of $D_1 - F_1$ such that $|V(C_i)| \le n - 3 - N$. Moreover, by Lemma 2.1 and Remark 2.2, we know that $D_1 - F_1$ has no component C_0 such that $n - 2 - N \le |V(C_0)| \le n - 1$. Next we derive contradictions by considering two cases.

Download English Version:

https://daneshyari.com/en/article/1709545

Download Persian Version:

https://daneshyari.com/article/1709545

Daneshyari.com