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a b s t r a c t

Given a graph G and a non-negative integer g, the g-extraconnectivity of G (written κg (G))
is the minimum cardinality of a set of vertices of G, if it exists, whose deletion disconnects
G, and where every remaining component hasmore than g vertices. The usual connectivity
and superconnectivity of G correspond to κ0(G) and κ1(G), respectively. In this work, we
determine κg (Qn) for 0 ≤ g ≤ n, n ≥ 4, where Qn denotes the n-dimensional hypercube.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

It iswell known that the topology of an interconnected network is oftenmodeled by a connected graph of communication
links. In the network the connectivity κ(G) is an important factor determining the reliability and fault tolerance of the
network. Here, we consider the extraconnectivity, which was defined by Fàbrega and Fiol [2]. The extraconnectivity
corresponds to a kind of conditional connectivity introduced by Harary [3].
Let G be a connected undirected graph, andP a graph-theoretic property. Harary [3] defined the conditional connectivity

κ(G;P ) as theminimum cardinality of a set of vertices, if it exists, whose deletion disconnects G andwhere every remaining
component has propertyP . Let g be anon-negative integer and letPg be the property of havingmore than g vertices. Fàbrega
and Fiol [2] defined the g-extraconnectivity κg(G) of G as κ(G;P ).
Hypercubes are used as fundamental models for computer networks. There are many research articles on hypercubes

(see, for example [4–8]). An n-dimensional hypercube is an undirected graph Qn = (V , E) with |V | = 2n and |E| = n2n−1.
Each vertex can be represented by an n-bit binary string. There is an edge between two vertices whenever their binary
string representation differs in only one bit position. It is known that κ0(Qn) = κ(Qn) = n, κ1(Qn) = 2n− 2 for n ≥ 3 and
κ2(G) = 3n − 5 for n ≥ 6 (see [4,8]). In this work, we show that κg(G) = (g + 1)n − 2g −

( g
2

)
when 0 ≤ g ≤ n − 4 and

κg(G) = n(n−1)
2 when n− 3 ≤ g ≤ n for n ≥ 4. Following Latifi [5], we express Qn as D0 � D1, where D0 and D1 are the two

(n− 1)-subcubes of Qn induced by the vertices with the ith coordinates 0 and 1 respectively. Sometimes we use X i−10Xn−i
and X i−11Xn−i to denote D0 and D1, where X ∈ Z2. Clearly, the vertex v in one (n − 1)-subcube has exactly one neighbor
v′ in another (n − 1)-subcube; we call v′ the out neighbor of v. Let A ⊆ G, v ∈ V (G). We use NG(v) to denote the set of
the neighbors of v in G, NG(A) to denote the set (

⋃
v∈V (A) NG(v)) \ V (A), CG(A) to denote the set NG(A) ∪ V (A). We follow

Bondy [1] for terminologies not given here.

2. Preliminaries

Before discussing the κg(Qn), We give the following lemmas.
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Lemma 2.1. Let A be a subgraph of Qn with |V (A)| = g + 1 for n ≥ 4. Then |NQn(A)| ≥ (g + 1)n− 2g −
( g
2

)
.

Proof. By induction on |V (A)|. Clearly, the result holds for |V (A)| = 1. Assume that the result holds for all Awith |V (A)| ≤ h.
Next we show that the result is true for Awith |V (A)| = h+ 1. We directly use g + 1 instead of h+ 1.
We first show that Qn can be decomposed into D0 and D1 such that D0 ∩ A = A0 and D1 ∩ A = A1 with V (A0) 6= ∅

and V (A1) 6= ∅. Since g ≥ 1, |V (A)| ≥ 2. Let x = x1x2 · · · xi · · · xn and y = y1y2 · · · yi · · · yn be two distinct vertices of
A; without loss of generality, assume xi = 0 and yi = 1 for an integer i. Let D0 = X i−10Xn−i,D1 = X i−11Xn−i. Then
x ∈ V (D0), y ∈ V (D1), and thus V (A0) 6= ∅, V (A1) 6= ∅.
Assume |V (A0)| = N , 1 ≤ N ≤ g . By the induction hypothesis, we have |ND0(A0)| ≥ N(n − 1) − 2(N − 1) −

(
N−1
2

)
and |ND1(A1)| ≥ (g + 1 − N)(n − 1) − 2(g − N) −

(
g−N
2

)
. Since NQn(A) = ND0(A0) ∪ ND1(A0) ∪ ND1(A1) ∪ ND0(A1) and

ND0(A0)∩ND1(A1) = ∅, we have |NQn(A)| ≥ |ND0(A0)|+|ND1(A1)|. Obviously, |ND0(A0)|+|ND1(A1)|−[(g+1)n−2g−
( g
2

)
] ≥

N(n−1)−2(N−1)−
(
N−1
2

)
+(g+1−N)(n−1)−2(g−N)−2

(
g−N
2

)
−[(g+1)n−2g−

( g
2

)
] = −N2+(g+1)N−g . It is

easy to see that f (N) = −N2+ (g+ 1)N− g is increasing in N when 1 ≤ N ≤ g+1
2 and decreasing in N when

g+1
2 ≤ N ≤ g ,

and f (1) = f (g) = 0. Thus |ND0(A0)| + |ND1(A1)| ≥ (g + 1)n− 2g −
( g
2

)
for 1 ≤ N ≤ g . �

Remark 2.2. Note that hn(g) = (g + 1)n− 2g −
( g
2

)
is increasing when g ≤ n− 2, the maximum of hn(g) is hn(n− 2) =

(n−1)n−2(n−2)−
(
n−2
2

)
= hn(n−1) = n2−2(n−1)−

(
n−1
2

)
and hn(n−1) = hn(n−2) > hn(n) > (g+1)n−2g−

( g
2

)
for 0 ≤ g ≤ n− 4. In particular, hn−1(g1)+ hn−1(g2) > hn(g)+ 1 when 0 ≤ g1, g2 ≤ n− 1 and g1 + 1+ g2 + 1 > g + 1.

Lemma 2.3. Let Qn = D0 � D1 and let F be a vertex cutset of Qn. Suppose B is a subgraph of D1 consisting of some components
of Qn − F . If |V (B)| ≥ g + 1, then |F | ≥ (g + 1)n− 2g −

( g
2

)
.

Proof. Let B be the subgraph that satisfies the conditions of this lemma. Assume TB is a subgraph of B such that |V (TB)| =
g + 1. By Lemma 2.1, we have |ND1(TB)| ≥ (g + 1)(n − 1) − 2g −

( g
2

)
. Since B is disconnected with D0, that is, for each

v ∈ ND1(TB), at least one of v and its out neighbor v
′ is in F , we thus have |F | ≥ |ND1(TB)|+|V (TB)| ≥ (g+1)n−2g−

( g
2

)
. �

Lemma 2.4. Assume n ≥ 4, B ⊆ Qn and |V (B)| ≥ n. If |V (Qn)\CQn(B)| ≥ n, then |NQn(B)| > (n−3)n−2(n−4)−
(
n−4
2

)
+1.

Proof. By induction. Let B ⊆ Qn, |V (B)| ≥ n and |V (Qn)\CQn(B)| ≥ n. For n = 4, we have 4 ≤ |V (B)| ≤ 5. The result follows
directly by Lemma 2.1. Assume that the result holds for all n < M . We show that the result is true for n = M .
Suppose |NQn(B)| ≤ (n− 3)n− 2(n− 4)−

(
n−4
2

)
+ 1. We shall derive a contradiction. Let F = NQn(B), F0 = F ∩ V (D0)

and F1 = F ∩ V (D1). Then either |F0| ≤
(n−3)n−2(n−4)−

(
n−4
2

)
+1

2 or |F1| ≤
(n−3)n−2(n−4)−

(
n−4
2

)
+1

2 . Without loss of generality,

we assume |F0| ≤
(n−3)n−2(n−4)−

(
n−4
2

)
+1

2 .
Assume that G1,G2, . . . ,Gs are all components of D0− F0 such that |V (Gi)| < n−3

2 and use G
∗ to denote D0− (F ∪V (G1∪

· · · ∪ Gs)).
Claim 1.

∑s
i=1 |V (Gi)| <

n−3
2 .

Observe that ( n−32 )n−2(
n−3
2 −1)−

( n−3
2 −1
2

)
>

(n−3)n−2(n−4)−
(
n−4
2

)
+1

2 when n is odd and ( n−22 )n−2(
n−2
2 −1)−

( n−2
2 −1
2

)
>

b
(n−3)n−2(n−4)−

(
n−4
2

)
+1

2 c when n is even. By Lemma 2.1, D0 − F0 contains no component A0 such that n−32 ≤ |V (A0)| ≤ n.
Now we show that

∑s
i=1 |V (Gi)| <

n−3
2 .

If n−32 ≤
∑s
i=1 |V (Gi)| ≤ n, by Lemma 2.1, we have |ND0(G1 ∪ · · · ∪ Gs)| > |F0|, a contradiction.

If
∑s
i=1 |V (Gi)| ≥ n, since |V (Gi)| <

n−3
2 , i = 1, . . . , s, we can find a subgraph S consisting of some Gi such that

n−3
2 ≤ |V (S)| ≤ n. Clearly, |ND0(S)| > |F0|, a contradiction. Thus

∑s
i=1 |V (Gi)| <

n−3
2 .

Claim 2. G∗ is connected.
Since |V (D0) \ (F0 ∪ (V (G1 ∪ · · · ∪ Gs)))| > 2n−1 − |F0| − n−3

2 > 0 for n ≥ 4, thus V (G∗) 6= ∅.
SupposeG∗ is disconnected, then every component ofG∗ has order at leastn. By induction,wehave |F0∪V (G1∪· · ·∪Gs)| >

(n− 4)(n− 1)− 2(n− 5)−
(
n−5
2

)
+ 1. However, |F0 ∪ V (G1 ∪ · · · ∪ Gs)| < |F0| + n−3

2 ≤ b
(n−3)n−2(n−4)−

(
n−4
2

)
+1

2 c+
n−3
2 ≤

(n− 4)(n− 1)− 2(n− 5)−
(
n−5
2

)
+ 1 for n ≥ 5, a contradiction. Thus G∗ is connected.

Assume that
∑s
i=1 |V (Gi)| = N and C1, C2, . . . , Cm are all components ofD1−F1 such that |V (Ci)| ≤ n−3−N . Moreover,

by Lemma 2.1 and Remark 2.2, we know that D1 − F1 has no component C0 such that n − 2 − N ≤ |V (C0)| ≤ n − 1. Next
we derive contradictions by considering two cases.
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