

Contents lists available at ScienceDirect

Applied Mathematics Letters

The exponent of Cartesian product of cycles

Byeong Moon Kim^a, Byung Chul Song^a, Woonjae Hwang^{b,*}

- ^a Department of Mathematics, Kangnung National University, Kangnung 210-702, Republic of Korea
- ^b Department of Information and Mathematics, Korea University, Jochiwon 339-700, Republic of Korea

ARTICLE INFO

Article history: Received 5 January 2007 Accepted 3 June 2008

Keywords: Exponent Cartesian product Digraphs

ABSTRACT

A digraph D is primitive if for each pair of vertices v, w of D, there is a positive integer k such that there is a directed walk of length k from v to w. The minimum of such k is the exponent of D. In this paper, we show that for a primitive graph G and a strongly connected bipartite digraph D, the exponent of the Cartesian product $G \times D$ is equal to the addition of the exponent of G and the diameter of G. Finally, we find the exponents of Cartesian products of cycles.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Let D=(V,A) be a digraph. For each pair v,w of vertices of D, a directed $v\longrightarrow w$ walk of length p is a sequence of vertices $v=v_0,v_1,\ldots,v_p=w$ and a sequence of arcs $(v_0,v_1),\ldots,(v_{p-1},v_p)$ in D. For each pair v,w of vertices in D we use $v\stackrel{\alpha}{\longrightarrow} w$ if there is a directed $v\longrightarrow w$ walk of length α . Conventionally, $v\stackrel{0}{\longrightarrow} v$ is permitted. A digraph D is primitive if there is a positive integer k such that for any given pair of vertices v,w in $D,v\stackrel{k}{\longrightarrow} w$. We say that the smallest such value k is the exponent, $\exp(D)$, of D. After the classical work of Wielandt [1], many results have been obtained [2–10] on the exponents of graphs and digraphs.

Definition 1. The Cartesian product $D_1 \times D_2$ of the digraphs $D_1 = (V_1, A_1)$ and $D_2 = (V_2, A_2)$ is a digraph $(V_1 \times V_2, A)$ such that

$$A = \{((v_1, w_1), (v_2, w_2)) \in (V_1 \times V_2) \times (V_1 \times V_2) | v_1 = v_2 \text{ and } (w_1, w_2) \in A_2, \text{ or } w_1 = w_2 \text{ and } (v_1, v_2) \in A_1\}.$$

The Cartesian product of graphs has been used in the theory of interconnection networks [11,12].

Definition 2. For each pair v, w of vertices in a digraph D = (V, A), the distance $\operatorname{dist}(v, w)$ from v to w is the smallest α such that $v \stackrel{\alpha}{\longrightarrow} w$ and if there is no directed walk from v to w, $\operatorname{dist}(v, w) = \infty$. The diameter of D is defined by

$$diam(D) \equiv \sup_{v,w \in V} dist(v,w).$$

For a strongly connected digraph D, diam $(D) < \infty$. Lamprey and Barnes [13] showed that

$$\exp(D \times E) < (n+m)^2 - 4(n+m) + 5$$

^{*} Corresponding author. Tel.: +82 41 860 1318; fax: +82 41 866 9091.

E-mail addresses: kbm@kangnung.ac.kr (B.M. Kim), bcsong@kangnung.ac.kr (B.C. Song), woonjae@korea.ac.kr (W. Hwang).

for a digraphs D and E on n and m vertices respectively. Kim et al. [14] improved the upper bound to nm - 1, which is extremal when (n, m) = 1. In this paper, we show that for a primitive graph E and a strongly connected bipartite digraph D,

$$\exp(G \times D) = \exp(G) + \operatorname{diam}(D).$$

By using the above formula, we compute the exponent of the Cartesian product of cycles.

2. Main theorems

Lemma 1. Let D, E be digraphs, v_1 , v_2 be vertices in D and w_1 , w_2 be vertices in E. If $(v_1, w_1) \xrightarrow{\alpha} (v_2, w_2)$ in $D \times E$, then $v_1 \xrightarrow{\beta} v_2$ and $w_1 \xrightarrow{\gamma} w_2$ for some β and γ such that $\alpha = \beta + \gamma$.

Proof. Let $W: (v_1, w_1) = (x_0, y_0) \longrightarrow (x_1, y_1) \longrightarrow \cdots \longrightarrow (x_\alpha, y_\alpha) = (v_2, w_2)$ be a walk in $D \times E$. Let $S_1 = \{i | x_{i-1} = x_i\}$ and $S_2 = \{i | y_{i-1} = y_i\}$. Then, if $1 \le i \le \alpha$, since $((x_{i-1}, y_{i-1}), (x_i, y_i))$ is an arc of $D \times E$, $x_{i-1} = x_i$ and (y_{i-1}, y_i) is an arc of E or $y_{i-1} = y_i$ and (x_{i-1}, x_i) is an arc of E. Thus $S_1 \cup S_2 = \{1, 2, \ldots, \alpha\}$. If $i \in S_1 \cap S_2$, $x_{i-1} = x_i$ and $y_{i-1} = y_i$. So there is a loop at x_i in E or E or

Corollary 1 (K. Day and A. Al-Ayyoub [11]). Let D, E be strongly connected digraphs. Then,

$$diam(D \times E) = diam(D) + diam(E)$$
.

Proof. Let (v_1, w_1) and (v_2, w_2) be in $D \times E$ such that $\operatorname{dist}((v_1, w_1), (v_2, w_2)) = \operatorname{diam}(D \times E)$. Let $v_1 \xrightarrow{\alpha} v_2, w_1 \xrightarrow{\beta} w_2$ with $\alpha \leq \operatorname{diam}(D)$, $\beta \leq \operatorname{diam}(E)$. Then $(v_1, w_1) \xrightarrow{\alpha} (v_2, w_1) \xrightarrow{\beta} (v_2, w_2)$. Thus, $(v_1, w_1) \xrightarrow{\alpha+\beta} (v_2, w_2)$. Therefore,

$$\operatorname{diam}(D \times E) = \operatorname{dist}((v_1, w_1), (v_2, w_2)) \le \alpha + \beta \le \operatorname{diam}(D) + \operatorname{diam}(E).$$

Conversely, let $\alpha=\operatorname{diam}(D)$ and $\beta=\operatorname{diam}(E)$. Then there exist v_1,v_2,w_1 and w_2 such that $\operatorname{dist}(v_1,v_2)=\alpha$ and $\operatorname{dist}(w_1,w_2)=\beta$. If $(v_1,w_1)\overset{\gamma}{\longrightarrow}(v_2,w_2)$, then by Lemma 1 $v_1\overset{\alpha'}{\longrightarrow}v_2$ and $w_1\overset{\beta'}{\longrightarrow}w_2$ such that $\gamma=\alpha'+\beta'$. But, $\alpha'\geq\alpha$ and $\beta'\geq\beta$. Thus, $\gamma=\alpha'+\beta'\geq\alpha+\beta=\operatorname{diam}(D)+\operatorname{diam}(E)$. Therefore,

$$diam(D \times E) > diam(D) + diam(E)$$
. \square

Theorem 1. If G is a primitive graph and D is a strongly connected bipartite digraph, then

$$\exp(G \times D) = \exp(G) + \operatorname{diam}(D).$$

Proof. Let G = (V, E), D = (W, A), $\alpha = \exp(G)$ and $\beta = \operatorname{diam}(D)$. Let $v, v' \in V$ and $w, w' \in W$. Then, $w \xrightarrow{t} w'$ for some $t \leq \beta$. Since $\alpha + \beta - t \geq \alpha$, $v \xrightarrow{\alpha + \beta - t} v'$. Since $(v, w) \xrightarrow{\alpha + \beta - t} (v', w) \xrightarrow{t} (v', w')$, $(v, w) \xrightarrow{\alpha + \beta} (v', w')$. Conversely, there are $v_1, v_2 \in V$ and $w_1, w_2 \in W$ such that there is no directed walk of length $\alpha - 1$ from v_1 to v_2 and $\operatorname{dist}(w_1, w_2) = \beta$. If $(v_1, w_1) \xrightarrow{\alpha + \beta - 1} (v_2, w_2)$, from Lemma 1, $v_1 \xrightarrow{\gamma} v_2$ and $w_1 \xrightarrow{\delta} w_2$ for some γ and δ such that $\alpha + \beta - 1 = \gamma + \delta$. Since $\operatorname{dist}(w_1, w_2) = \beta$ and D is bipartite, $\delta - \beta = 2t$ for some non-negative integer t. Thus $\alpha - 1 = \gamma + 2t$. Since G is a graph, $v_2 \xrightarrow{2t} v_2$, which implies $v_1 \xrightarrow{\alpha - 1} v_2$ in G. We obtain a contradiction. Therefore $\exp(G \times D) = \exp(G) + \operatorname{diam}(D)$. \square

Since the path P_n and the directed cycle Z_{2k} are bipartite, we have the following Corollaries 2 and 3.

Corollary 2. If G is a primitive graph and P_n is a path on n vertices, then

$$\exp(G \times P_n) = \exp(G) + n - 1.$$

Corollary 3. If G is a primitive graph and Z_{2k} is a directed cycle on 2k vertices, then

$$\exp(G \times Z_{2k}) = \exp(G) + 2k - 1.$$

Download English Version:

https://daneshyari.com/en/article/1709700

Download Persian Version:

 $\underline{https://daneshyari.com/article/1709700}$

Daneshyari.com