

Available online at www.sciencedirect.com



Applied Mathematics Letters

Applied Mathematics Letters 21 (2008) 820-823

www.elsevier.com/locate/aml

# Minimally restricted edge connected graphs<sup>☆</sup>

Yanmei Hong, Qinghai Liu, Zhao Zhang\*

College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, People's Republic of China

Received 20 September 2007; accepted 20 September 2007

#### Abstract

For a connected graph G = (V, E), an edge set  $S \subset E$  is a restricted edge cut if G - S is disconnected and there is no isolated vertex in G - S. The cardinality of a minimum restricted edge cut of G is the restricted edge connectivity of G, denoted by  $\lambda'(G)$ . A graph G is called minimally restricted edge connected if  $\lambda'(G - e) < \lambda'(G)$  for each edge  $e \in E$ . A graph G is  $\lambda'$ -optimal if  $\lambda'(G) = \xi(G)$ , where  $\xi(G)$  is the minimum edge degree of G. We show in this work that a minimally restricted edge connected graph is always  $\lambda'$ -optimal.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Restricted edge connectivity

## 1. Introduction

A network can be conveniently modelled as a graph G = (V, E). A classic measure of the fault tolerance of a network is the edge connectivity  $\lambda(G)$ . In general, the larger  $\lambda(G)$  is, the more reliable the network is [3]. For  $\lambda(G) \leq \delta(G)$ , where  $\delta(G)$  is the minimum degree of G, a graph is called  $\lambda$ -optimal if  $\lambda(G) = \delta(G)$ . There are many sufficient conditions for ensuring the  $\lambda$ -optimality of a graph, one of which is that every minimally edge connected graph is  $\lambda$ -optimal ([7], exercise 49). A graph G is called minimally edge connected if  $\lambda(G - e) < \lambda(G)$  for each edge  $e \in E(G)$ .

In 1988, Esfahanian and Hakimi proposed the concept of restricted edge connectivity [5,6]. An edge set  $S \subset E$  is said to be a *restricted edge cut* if G - S is disconnected and there is no isolated vertex in G - S. The *restricted edge connectivity* of G, denoted by  $\lambda'(G)$ , is the cardinality of a minimum restricted edge cut of G. It is proved in [6] that for any connected graph G of order at least 4 which is not isomorphic to the star  $K_{1,n-1}$ ,  $\lambda'(G)$  exists and satisfies  $\lambda'(G) \leq \xi(G)$ , where  $\xi(G) = \min\{d(u) + d(v) - 2 : uv \in E\}$  is the *minimum edge degree* of G. It is shown by Wang and Li that the larger  $\lambda'(G)$  is, the more reliable the networks is [10]. So, a graph G with  $\lambda'(G) = \xi(G)$  is called a  $\lambda'$ -optimal graph. There is much research on  $\lambda'$ -optimal graphs (see for example [1,2,8,9,12,13]).

A graph G is called *minimally restricted edge connected* if  $\lambda'(G-e) < \lambda'(G)$  for each edge  $e \in E(G)$ . It is implied in the definition that  $\lambda'(G-e)$  exists for each edge e. So, we do not consider the case where there is a pending edge in G, and thus  $\delta(G) \ge 2$ . In this work, we show that every minimally restricted edge connected graph is  $\lambda'$ -optimal.

\* Corresponding author.

 $<sup>\</sup>stackrel{\text{\tiny{the}}}{\sim}$  The research was supported by NSFC (60603003) and XJEDU.

E-mail addresses: lovely-hym@163.com (Y. Hong), liuqh506@163.com (Q. Liu), zhzhao@xju.edu.cn (Z. Zhang).

<sup>0893-9659/\$ -</sup> see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2007.09.004

Next, we introduce some terminologies used in this work.

A graph is *trivial* if it contains only one vertex; otherwise, it is *non-trivial*. For two disjoint vertex sets  $U_1, U_2 \subset V(G)$ , denote by  $[U_1, U_2]$  the set of edges with one end in  $U_1$  and the other end in  $U_2$ . G[U] is the subgraph of G induced by the vertex set  $U \subseteq V(G)$ ,  $\overline{U} = V(G) \setminus U$  is the complement of U. Write  $\omega(U) = |[U, \overline{U}]|$ , and  $d_U(u) = |[\{u\}, U \setminus \{u\}]|$ . For simplicity of notation, we sometimes use a graph itself to represent its vertex set. For instance,  $|[C, \overline{C}]|$  and  $\omega(C)$  is used instead of  $|[V(C), \overline{V(C)}]|$  and  $\omega(V(C))$ , where C is a subgraph of G. A vertex set U is called a  $\lambda'$ -fragment if  $[U, \overline{U}]$  is a restricted edge cut with  $\omega(U) = \lambda'(G)$ . Obviously, if U is a  $\lambda'$ -fragment, so is  $\overline{U}$ . For a  $\lambda'$ -fragment U, G[U] and  $G[\overline{U}]$  are both connected by the minimality of  $|[U, \overline{U}]|$ . A  $\lambda'$ -fragment with the minimum cardinality is called a  $\lambda'$ -atom. The cardinality of a  $\lambda'$ -atom is denoted by  $\alpha'(G)$ . Clearly,  $2 \le \alpha'(G) \le \frac{1}{2}|V(G)|$ .

The following two observations will be frequently used without mentioning them explicitly. The first one is that if two connected subgraphs  $G_1$  and  $G_2$  have non-empty intersection, then  $G_1 \cup G_2$  is also connected. The second one is that for a vertex set  $F \subseteq V(G)$  and a component C of G - F, if G[F] is connected, then G - C is also connected.

The following submodular inequality plays an important role in studying various kinds of connectivities [11]: for two vertex sets  $A, B \subset V$ ,

 $\omega(A \cap B) + \omega(A \cup B) \le \omega(A) + \omega(B).$ 

We follow [4] for terminologies and notation not given here.

### 2. Main result

**Lemma 1.** Let G = (V, E) be a  $\lambda'$ -connected graph, A be a  $\lambda'$ -atom of G, and B be a  $\lambda'$ -fragment of G. Suppose  $\alpha'(G) \ge 3$ . Then:

(a)  $d_B(u) \ge d_{V \setminus B}(u)$  for each  $u \in B$ , except when G[B] is a star and u is the center.

(b)  $d_A(u) > d_{V\setminus A}(u)$  for each  $u \in A$ .

(c)  $d_A(u) \ge 2$  holds for any vertex  $u \in A$  with  $d_G(u) \ge 2$ . In particular, if  $\delta(G) \ge 2$ , then  $\delta(G[A]) \ge 2$ .

**Proof.** Suppose there is a vertex  $u \in B$  with  $d_B(u) < d_{V\setminus B}(u)$ . Furthermore, if G[B] is a star, suppose u is not the center. Then, there is a non-trivial component C of G[B] - u. Note that  $G[\overline{C}]$  is also connected since  $G[\overline{B}]$  is connected, u is connected to  $G[\overline{B}]$  for  $d_{V\setminus B}(u) > 0$ , and every other component of G[B - u] - C is connected to u. So  $[C, \overline{C}]$  is a restricted edge cut of G, and thus

$$\omega(C) \ge \lambda'(G). \tag{1}$$

On the other hand,

$$\omega(C) = |[C, \overline{B}]| + |[C, u]| \le \omega(B) - d_{V \setminus B}(u) + d_B(u) < \omega(B) = \lambda'(G),$$
(2)

a contradiction.

The proof of (b) is similar to that of (a). The difference is that under the assumption  $d_A(u) \le d_{V\setminus A}(u)$ , inequality (2) becomes  $\omega(C) \le \lambda'(G)$ . Combining with inequality (1), we have  $\omega(C) = \lambda'(G)$ , and thus V(C) is a smaller  $\lambda'$ -fragment than A, contradicting that A is a  $\lambda'$ -atom.

(c) is a consequence of (b).  $\Box$ 

**Lemma 2.** Let G = (V, E) be a  $\lambda'$ -connected graph, A be a  $\lambda'$ -atom of G and B be a  $\lambda'$ -fragment of G. Suppose  $A \cap B \neq \emptyset$ ,  $A \setminus B \neq \emptyset$ ,  $\overline{A \cup B} \neq \emptyset$ , and  $\alpha'(G) \ge 3$ . Then,

(a) At least one of  $A \cap B$  and  $\overline{A \cup B}$  is an independent set.

(b) If there is a proper subset F of A with  $|F| \ge 2$ ,  $G[\overline{F}]$  being connected and  $\omega(F) \le \lambda'(G)$ , then F is an independent set.

**Proof.** (a) Suppose neither  $A \cap B$  nor  $\overline{A \cup B}$  is independent. Then there exist non-trivial components C of  $G[A \cap B]$  and D of  $G[\overline{A \cup B}]$ . Clearly,  $\omega(C) \leq \omega(A \cap B)$  and  $\omega(D) \leq \omega(\overline{A \cup B}) = \omega(A \cup B)$ . By noting that G[C], G[D],  $G[\overline{C}]$  and  $G[\overline{D}]$  are all connected, we have  $\omega(C) \geq \lambda'(G)$  and  $\omega(D) \geq \lambda'(G)$ . So,

$$2\lambda'(G) \le \omega(C) + \omega(D) \le \omega(A \cup B) + \omega(A \cap B) \le \omega(A) + \omega(B) = 2\lambda'(G).$$

It follows that  $\omega(C) = \lambda'(G)$ , and thus C is a  $\lambda'$ -fragment with fewer vertices than A, a contradiction.

Download English Version:

# https://daneshyari.com/en/article/1709762

Download Persian Version:

https://daneshyari.com/article/1709762

Daneshyari.com