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a b s t r a c t

In this paper our main goal is to describe the structure of workflows. A workflow is an
abstraction of a business process that consists of one ormore tasks to be executed to reach a
final objective. In our approachwe describe aworkflow as a graphwhose vertices represent
workflow tasks and the arcs representworkflow transitions.Moreover, every arc (tk, tl) (i.e.,
a transition) has attributed a Boolean value to specify the execution/non-execution of tasks
tk, tl.With this attribution we are able to identify the natural flow in the workflow.
Finally, we establish a necessary and sufficient condition for the termination of

workflows. In other words, we identify conditions under which a business process will be
complete.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we use graph theory and propositional logic to describe and analyze workflows. In particular, the use of
propositional logic is a fundamental instrument to determine if a workflow has been correctly designed by an end user from
the termination point of view. A workflow is an abstraction of a business process that consists of one or more tasks that
need to be executed to complete a process (for example, hiring process, sales order processing, article reviewing, member
registration, etc.), that can include human activity and/or software applications to carry out activities. A workflow can be
represented by a graph,whose tasks are representedwith vertices and the tasks aremodeledwith arcs, known as transitions.
Each task represents a unit of work to be executed either by humans or application programs. A workflow describes all of
the tasks needed to achieve each step in a business process.
Workflows may involve many distinct, heterogeneous, autonomous, and distributed tasks that are interrelated in

complex ways. The complexity of large workflows requires a precise modeling to ensure that they perform according to
initial specifications.
A vast number of formal frameworks have been proposed to allow workflow modeling verification and analysis, such as

State and Activity Charts [1], Graphs [2], Event-Condition-Action rules [3,4], Petri Nets [5–8], Temporal Logic [9] andMarkov
chains [10]. Other approaches can be found in [11–13].
In this paper our formalism is based on graph theory and propositional logic. One relevant aspect of our approach is the

use of propositional logic. In particular, the attribution of Boolean values to each arc of the workflow is very important, since
it allows us to identify the natural flow in the workflow.
Finally, we identify conditions under which a workflow logically terminates. In other words, we are able to verify if a

business process will be complete.

2. Workflow analysis

In this section we analyze the structure of workflows. We start by presenting the formal concept of a workflow.
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Fig. 1. Example of a workflow.

Definition 1. A workflow is a tri-logic acyclic directed graphWG = (T , A), where T = {t1, t2, . . . , tn} is a finite nonempty
set of vertices representing workflow tasks. Each task ti (i.e., a vertex) has an input logic operator (represented by � ti)
and an output logic operator (represented by ti ≺). An input/output logic operator can be the logical AND (•), the OR (⊗),
or the XOR-exclusive-or-(⊕). The set A = {at, au, a1, a2, . . . , am} is a finite nonempty set of arcs representing workflow
transitions. Each transition ai, i ∈ {1, . . . ,m}, is a tuple (tk, tl) where tk, tl ∈ T . The transition at is a tuple of the form
(t, t1) and transition au is a tuple of the form (tn,u). The symbols t and u represent abstract tasks which indicate the entry
and ending point of the workflow, respectively. We use the symbol ′ to reference the label of a transition, i.e., a′i references
transition ai, ai ∈ A. The elements a′i are called Boolean terms and form the set A

′.

Example 2. In Fig. 1 is shown aworkflowWG = (T , A), where T = {t1, t2, . . . , t10}, A = {at, au, a1, a2, . . ., a12} and A′ = {a′t,
a′
u
, a′1, a

′

2, . . . , a
′

12}. The tuple a2 = (t2, t3) is an example of a transition. In task t10, the input logic operator (� t10) is an AND
(•); in task t2 the output logic operator (t2 ≺) is an OR (⊗).

Definition 3. For any task ti ∈ T , the incoming transitions are the tuples of the form aj = (x, ti), x ∈ T , aj ∈ A, and the
outgoing transitions are the tuples of the form al = (ti, y), y ∈ T , al ∈ A.

Example 4. In Fig. 1, the incoming transition for task t2 is a1 = (t1, t2) and the outgoing transitions are a2 = (t2, t3) and
a3 = (t2, t4).

Definition 5. Given any task ti ∈ T , the incoming condition is the Boolean expression a′k1ϕ . . . ϕa′kl , ϕ ∈ {•,⊗,⊕}, where
the terms a′k1 , . . . , a

′

kl
∈ A′, and ak1 , . . . , akl are the incoming transitions of task ti. The terms a

′

k1
, . . . , a′kl are connected with

the logical operator� ti. If the task has only one incoming transition then the condition does not have logical operator.
The outgoing condition for task ti is the Boolean expression a′k1ϕ . . . ϕa′kl , ϕ ∈ {•,⊗,⊕}, where the terms a′k1 , . . . , a

′

kl
∈ A′,

and ak1 , . . . , akl are the outgoing transitions of task ti. The terms a
′

k1
, . . . , a′kl are connected with the logical operator ti ≺. If

the task has only one outgoing transition then the condition does not have logical operator.

Example 6. Consider task t2 in Fig. 1. Its incoming condition is a′1 and its outgoing condition is a
′

2 ⊗ a
′

3.

A workflow is a set of tasks and transitions. The tasks can be considered as atomic pieces of the workflow, since they
generate all transitions. Clearly, knowing the tasks and transitions of the workflow, allows to know the precise structure of
theworkflow. However, we need to exploit underwhich conditions an arbitrary task is executed and the consequences of its
execution, i.e., we need to determine the natural flow of the workflow. Notice that when a workflow is correctly designed, it
terminates by enabling the ending transition au. Our main goal, is to identify conditions under which the ending transition
au is enabled, i.e., the workflow is correctly designed.
In order to analyze the consequences of the execution of a certain task, we introduce the concept of Event–Actionmodel.

Definition 7. LetWG = (T , A) be a workflow and let ti ∈ T . An Event–Action (EA) model for task ti is an implication of the
form ti : fE  fC , where fE and fC are the incoming and outgoing conditions of task ti, respectively. An EA model has the
behavior with two distinct modes: when fE is evaluated to true, fC is also evaluated to true; when fE is evaluated to false, fC
is always false. The condition fE is called the event condition and fC is called the action condition.
Every EAmodel ti : fE  fC has attributed a Boolean value, according to the following rules:

(i) If both fE, fC are true, then its Boolean value is true;
(ii) If both fE, fC are false, then its Boolean value is false.

A workflow starts its execution when transition at is enabled. A transition is enabled/disabled if the respective Boolean
term is asserted to be true/false. Thus, the workflow starts its execution by asserting a′

t
to be true.

For any EA model, the incoming condition propagates its Boolean value to the respective outgoing condition, i.e., the
Boolean value of the outgoing condition is not arbitrary, it always depends on the Boolean value of the incoming condition,
according to Definition 7. In other words, an EAmodel has a behavior with two distinct modes: when fE is evaluated to true
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