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Abstract

DiPerna [R.J. DiPerna, Global solutions to a class of nonlinear hyperbolic systems of equations, Comm. Rat. Pure Appl. Math.
26 (1973) 1–28] use the Glimm’s scheme method to obtain a global weak solution to the Euler equations of one-dimensional,
compressible fluid flow with 1 < γ < 3, while in this work, we use the compensated compactness method coupled with
some basic ideas of the kinetic formulation developed by Lions, Perthame, Souganidis and Tadmor [P.L. Lions, B. Perthame,
P.E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and
Lagrangian coordinates, Comm. Pure Appl. Math. 49 (1996) 599–638; P.L. Lions, B. Perthame, E. Tadmor, Kinetic formulation
of the isentropic gas dynamics and p-system, Comm. Math. Phys. 163 (1994) 415–431] to obtain the existence of global entropy
solutions to the system with a uniform amplitude bound.
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1. Introduction

Let us consider the Cauchy problem for the nonlinear hyperbolic system
ρt + (ρu)x = 0

ut +

(
1
2

u2
+ P(ρ)

)
x

= 0
(1)

with bounded measurable initial data

(ρ(x, 0), u(x, 0)) = (ρ0(x), u0(x)) ρ0(x) ≥ 0, (2)

where the nonlinear function P(ρ) =
θ
2ρ

γ−1, θ =
γ−1

2 and γ ∈ (1, 3) is a constant.
System (1) was first derived by Earnshaw [2] in 1858 for isentropic flow and is also referred to as the Euler

equations of one-dimensional, compressible fluid flow, where ρ denotes the density, u the velocity, and P(ρ) the
pressure of the fluid. System (1) has other different physical backgrounds. For instance, it is a scaling limit system of
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a Newtonian dynamics with long-range interaction for a continuous distribution of mass in R and also a hydrodynamic
limit for the Vlasov equation (see [5]).

By simple calculations, two eigenvalues of system (1) are

λ1 = u − θρθ , λ2 = u + θρθ

with corresponding right eigenvectors

r1 = (1,−θρθ−1)T, r1 = (1, θρθ−1)T;

the two corresponding Riemann invariants are

w = u + ρθ , z = u − ρθ ;

and

∇λ1 · r1 = −θ(θ + 1)ρθ−1, ∇λ2 · r2 = θ(θ + 1)ρθ−1.

Thus both characteristic fields are linearly degenerate on ρ = ∞, since 1 < γ < 3.
The study of the existence of global weak solutions for the Cauchy problem (1) and (2) was started by DiPerna

[1] for the case of 1 < γ < 3 by using the Glimm’s scheme method, while in this work, we use the compensated
compactness method and the kinetic formulation to get the existence of global entropy solutions for the Cauchy
problem with a uniform amplitude bound. Namely, we assume the viscosity solutions to the following Cauchy problem
(3) and (4) for the related parabolic system are uniformly bounded,

ρt + (ρu)x = ερxx

ut +

(
1
2

u2
+ P(ρ)

)
x

= εuxx
(3)

with initial data

(ρ(x, 0), u(x, 0)) = (ρε0(x), uε0(x)), (4)

where (ρε0(x), uε0(x)) = (ρ0(x)+ ε, u0(x)) ∗ Gε, and Gε is a mollifier.

Theorem 1. Let the initial data (ρ0(x), u0(x)) be bounded measurable and ρ0(x) ≥ 0. Then the Cauchy problem (1)
and (2) with a uniform amplitude bound has a global bounded entropy solution.

Remark 1. A pair of functions (ρ(x, t), u(x, t)) is called an entropy solution of the Cauchy problem (1) and (2) if
∫

∞

0

∫
∞

−∞

ρφt + ρuφx dxdt +

∫
∞

−∞

ρ0(x)φ(x, 0)dx = 0∫
∞

0

∫
∞

−∞

uφt +

(
1
2

u2
+ P(ρ)

)
φx dxdt +

∫
∞

−∞

u0(x)φ(x, 0)dx = 0

for any test function φ(x, t) ∈ C1
0(R × R+) and

η(ρ(x, t), u(x, t))t + q(ρ(x, t), u(x, t))x ≤ 0

in the sense of distributions for any convex entropy η(ρ, u) of system (1), where q(ρ, u) is the entropy flux associated
with η(ρ, u).

2. Proof of Theorem 1

Since the viscosity solutions to the Cauchy problem (3) and (4) are uniformly bounded, there exists a subsequence
of the viscosity solutions (still labelled) (ρε(x, t), uε(x, t)) such that

w? − lim(ρε(x, t), uε(x, t)) = (ρ(x, t), u(x, t)).

We shall show that (ρ(x, t), u(x, t)) is an entropy solution of the Cauchy problem (1) and (2). For simplicity, we will
drop the superscript ε.
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