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a b s t r a c t

One important question in population models is whether periodic solutions exist and
whether they are bounded betweenminimal andmaximal solutions. This paper deals with
the existence of maximal and minimal periodic solutions for the periodic solutions of a
first-order functional differential equation

y′(t) = −a(t)y(t)+ f (t, y(t − τ(t)))

by using the method of lower and upper solutions.
© 2009 Elsevier Ltd. All rights reserved.

Functional differential equations with periodic delays appear in a number of ecological, economical, control and
physiological models. One important question is whether these equations can support periodic solutions. Such questions
have been studied extensively by a number of authors (see for example, [1–5] and the references therein).
In general, if there exist a priori bounds for periodic solutions, we can use them in fixed point theorems for locating the

desired solutions. A natural question then arises as to whether there exist more general bounding functions such as lower
and upper periodic solutions, maximal and minimal periodic solutions, etc.
This paper deals with the above problem for periodic solutions of the first-order functional differential equations

y′(t) = −a(t)y(t)+ f (t, y(t − τ(t))). (1)
In what follows, we will assume that a = a(t) and τ = τ(t) are continuous T -periodic functions. We also assume that

T > 0, that f ∈ C
(
R2, R

)
is a continuous function and T -periodic with respect to the first variable and nondecreasing with

respect to the second variable, and that a (t) > 0 for t ∈ R.
In the remainder of this section, we provide some background definitions.

Definition 1. Let E and F be ordered Banach spaceswith ordering≤. LetD ⊂ E. An operatorA is called an increasing operator
on D if A : D→ F and Ax ≤ Ay for any x, y ∈ D and x ≤ y.

Definition 2. Let E be an ordered Banach space. Let D ⊂ E and A : D → E. x0 ∈ D is said to be a lower solution of the
operator equation x = Ax if x0 ≤ Ax0. We also call the point x0 a lower solution of A. y0 ∈ D is said to be an upper solution
of the operator equation x = Ax if Ay0 ≤ y0. We also call the point y0 an upper solution of A.
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The proof of the following theorem can be found in [6].

Theorem 1. Let E be an ordered Banach space, and let x0, y0 ∈ E such that x0 ≤ y0. Let D = [x0, y0] be the set of u ∈ E such
that x0 ≤ u ≤ y0 and A : D→ E. Suppose that
(1) A is an increasing operator;
(2) x0 is a lower solutions of A, y0 is an upper solutions of A;
(3) A ∈ C(D, E);
(4) A(D) is a precompact set of E.

Then
(1) A has a minimal fixed point x∗ and maximal fixed point y∗, i.e. x∗ = Ax∗, y∗ = Ay∗, and any fixed point z∗ of A in

[x0, y0] belongs to [x∗, y∗].
(2) Set

xn = Axn−1, yn = Ayn−1, n ∈ N. (2)

Then

x0 ≤ x1 ≤ · · · ≤ xn ≤ · · · ≤ yn ≤ · · · ≤ y1 ≤ y0 (3)

and

xn → x∗, yn → y∗, n→∞. (4)

It has been shown that the Eq. (1) has a T -periodic solution y (t) if, and only if y (t) is a T -periodic solution of the equation

y(t) =
∫ t+T

t
G(t, s)f (s, y(s− τ(s)))ds, (5)

where

G(t, s) =
exp

(∫ s
t a(u)du

)
exp(

∫ T
0 a(u)du)− 1

(see e.g. [1,2]). Therefore, wemay transform our existence problem into a fixed point problem. To this end, we first note that

0 < m ≡ min
0≤t,s≤T

G(t, s) ≤ G(t, s) ≤ max
0≤t,s≤T

G(t, s) ≡ M <∞.

The existence of periodic solutions for the Eq. (5) has been studied extensively by a number of authorswhen τ ≡ 0. (See [1–5]
and the references therein).
Now let CT (R) be the set of all real T -periodic continuous functions defined on Rwhich is endowed with the usual linear

structure as well as the norm

‖y‖ = sup
t∈[0,T ]

|y(t)| .

Set P0 = {φ ∈ CT (R) : φ(x) ≥ 0, x ∈ R}. Then it is easy to see that P0 ⊂ CT (R) is a normal cone, and P0 induces an ordering
in E given by x ≤ y, if and only if y− x ∈ P0.

Definition 3. v0 ∈ C1T (R) is called a lower solution of Eq. (1) if it satisfies the following condition

v′0(t) ≤ −a(t)v0(t)+ f (t, v0(t − τ(t))), (6)

similarly, we say ω0 ∈ C1T (R) is a upper solution of Eq. (1) if it satisfies the following condition

ω′0(t) ≥ −a(t)ω0(t)+ f (t, ω0(t − τ(t))). (7)

Theorem 2. Suppose that v0(t) andω0(t) are respectively lower and upper solutions for Eq. (1), and v0(t) ≤ ω0(t). Then Eq. (1)
has a minimal solution v∗(t) and a maximal solution ω∗(t) in D = {u ∈ CT (R) : v0 ≤ u ≤ ω0}. Set

vn(t) =
∫ t+T

t
G(t, s)f (s, vn−1(s− τ(s)))ds n ∈ N,

and

ωn(t) =
∫ t+T

t
G(t, s)f (s, ωn−1(s− τ(s)))ds n ∈ N.

Then {vn(t)}, {ωn(t)} are monotonically and uniformly convergent to v∗(t) and ω∗(t), respectively, and any periodic solution
y(t) of Eq. (1) in [v0, w0] belongs to [v∗, ω∗].
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