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a b s t r a c t

For a weighted hypergraph (H, ω), with vertex set X , edge set E, and weighting ω :
E → R≥0, the maximum coverage problem is to find a k-element subset Y ⊆ X that
maximizes the total weight of those edges that have non-empty intersectionwith Y among
all k-element subsets of X . Such a subset Y is called optimal. Recently, within the field
of phylogenetics it has been shown that for certain weighted hypergraphs coming from
phylogenetic trees the collection of optimal subsets of X forms a so-called strong greedoid.
We call hypergraphs having this latter property strongly greedy. In this notewe characterize
the r-uniform hypergraphs H with unit edge weights that are strongly greedy in the case
where r is a prime number.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Recall that a hypergraph H = (X, E) consists of a finite non-empty set X of vertices and a collection E of subsets of X ,
called hyperedges or edges (cf. [1]). Let∼ be the binary relation on X defined by taking the transitive closure of the relation
consisting of those pairs (x, y), x, y ∈ X , for which there exists some edge e ∈ E with {x, y} ⊆ e or x = y. The connected
components of H are the equivalence classes of∼. Aweighted hypergraph (H, ω) is a hypergraph H = (X, E) together with a
map ω that assigns a non-negative real number ω(e) to every edge e ∈ E. The score, σ(Y ) = σ(H,ω)(Y ), of any subset Y ⊆ X
relative to (H, ω) is the total weight of those edges that have a non-empty intersection with Y .
In themaximumcoverageproblem, one aims to find subsets Y ⊆ X relative to aweighted hypergraph (H = (X, E), ω) that

are optimal, that is, subsets Y of X having maximum score amongst all |Y |-element subsets of X [2]. The maximum coverage
problem is a well-studied problem in combinatorial optimization and appears in various applications, for example, in circuit
layout, scheduling and facility location (see e.g. [3]). Various algorithms have been devised for its solution, among them a
simple greedy algorithm that starts with an optimal subset of size 1, and, at each step, adds a vertex such that the increase
in the score of the resulting subset is maximum. Although even very restricted versions of the maximum coverage problem
are NP-hard [4], in [2] it is shown that this greedy algorithm is guaranteed to yield a solution that is within (1− 1/e) of the
optimal score, and it appears unlikely that any algorithm can do significantly better [5].
Recently, in the field of phylogenetics [6], studies have appeared on applying the greedy algorithm to a special class of

hypergraphs called hierarchies, hypergraphs H = (X, E) for which e1 ∩ e2 ∈ {∅, e1, e2} holds for all e1, e2 ∈ E. Weighted
hierarchies are of interest in phylogenetics as they correspond to edge-weighted rooted phylogenetic trees (see [6, p. 52]
for more details, and Fig. 1(a) for a simple example). Moreover, in this setting, the score σ(Y ) of any subset Y ⊆ X is known
as the phylogenetic diversity of Y (which is simply the length of the subtree spanned by the elements in Y and the root in the
corresponding tree — see e.g. Fig. 1(b)), a quantity that has applications in biodiversity conservation [7].
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Fig. 1. (a) A rooted phylogenetic tree T corresponding to a weighted hierarchy on the set {x1, . . . , x5}with root r . Each edge of T corresponds to an edge
in the hierarchy (e.g. f corresponds to {x3, x4, x5}, having weight 2). (b) The phylogenetic diversity of the set {x1, x3, x4} equals 12, the total weight of the
induced rooted subtree.

In [8,9] it is shown that the greedy algorithm always yields optimal solutions to the maximum coverage problem for
weighted hierarchies, and in [10, Theorem 3.2] it is shown that the collection O(H,ω) of optimal subsets of X (where subsets
can have any size between 0 and |X |) even forms a strong greedoid, i.e. it satisfies the following conditions:

(S1) For every Y ∈ O(H,ω), Y 6= ∅, there exists at least one y ∈ Y such that (Y \ {y}) ∈ O(H,ω).
(S2) For every Y1, Y2 ∈ O(H,ω) such that |Y1| + 1 = |Y2| there exists at least one y ∈ Y2 \ Y1 with the property that

(Y1 ∪ {y}) ∈ O(H,ω) and (Y2 \ {y}) ∈ O(H,ω).

Note that strong greedoids were introduced to provide a framework for optimization problems where the greedy algorithm
is compatible with the structure of the optimal sets [11–13].
Intriguingly, it is not hard to show using [10, Theorem 3.2] that hierarchies H are in fact characterized by the property

thatO(H,ω) is a strong greedoid for anyweighting ω of H . Motivated by this fact as well as recent extensions of phylogenetic
diversity to non-hierarchical structures [14,15], in this note we study weighted hypergraphs (H, ω) for which O(H,ω)
is a strong greedoid, which we call strongly greedy hypergraphs for short. In particular, although it appears to be an
interesting but difficult problem to characterize strongly greedy hypergraphs in general, restricting our attention to r-
uniform hypergraphs H (hypergraphs in which every edge has cardinality r ∈ N [1, p. 3]) with unit edge weights, and
noting that a clique in H is a subset C ⊆ X such that every r-element subset of C is an edge of H , we present a proof for the
following result.

Theorem 1.1. Let H = (X, E) be an r-uniform hypergraph. If every connected component of H is a clique, then, denoting by 1
the weight function that assigns weight 1 to every edge in H, the hypergraph (H, 1) is strongly greedy. Moreover, if r is prime and
(H, 1) is strongly greedy, then every connected component of H is a clique.

Before presenting the proof of this result, we close this section by noting that for r not prime, there exist r-uniform
hypergraphs that are strongly greedy in which not every connected component is a clique. Indeed, it is straight-forward to
check that the 4-uniform hypergraph H = (X, E)with X = {a1, . . . , a4, b1, . . . , b4} and E consisting of the following edges:

{a1, a2, b1, b2} {a2, a3, b2, b3} {a1, a2, b3, b4} {a2, a3, b1, b4} {a1, a2, a3, a4}
{a1, a3, b1, b3} {a2, a4, b2, b4} {a1, a3, b2, b4} {a2, a4, b1, b3} {b1, b2, b3, b4}
{a1, a4, b1, b4} {a3, a4, b3, b4} {a1, a4, b2, b3} {a3, a4, b1, b2}

is strongly greedy, although it has only one connected component, namely X , which is not a clique since H has less then(
8
4

)
= 70 edges. Even so, this hypergraph is still highly symmetric, and so it could be of interest to understand which

highly symmetric r-uniform hypergraphs yield strong greedoids in the case where r is not a prime.

2. Proof of Theorem 1.1

First note that, for any hypergraphH ,O(H,1) contains at least one set of size k for every k ∈ {0, 1, . . . , |X |}. Hence, ifO(H,1)
satisfies (S2), then it also satisfies (S1), and so (H, 1) is strongly greedy if and only if O(H,1) satisfies (S2).
Now suppose thatH is a hypergraph inwhich every connected component ofH is a clique.We show that (H, 1) is strongly

greedy. Let C1, . . . , Cl be the connected components of H . Fix an arbitrary k ∈ {0, 1, . . . , |X | − 1}. Let A, B ∈ O = O(H,1),
|A| = |B| − 1 = k. For 1 ≤ i ≤ l define Ai = Ci ∩ A and Bi = Ci ∩ B. Fix an arbitrary x ∈ B \ A and let j be such that x ∈ Cj.
Define A′ = A ∪ {x} and B′ = B \ {x}.
Since A, B ∈ O, we must have σ(B′) ≤ σ(A) and σ(A′) ≤ σ(B). Moreover, since

σ(B′) = σ(B)−
(
|Cj \ Bj|
r − 1

)
and σ(A′) = σ(A)+

(
|Cj \ Aj| − 1
r − 1

)
both clearly hold, it follows that(

|Cj \ Aj| − 1
r − 1

)
≤ σ(B)− σ(A) ≤

(
|Cj \ Bj|
r − 1

)
.
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