Contents lists available at ScienceDirect

## **Applied Mathematics Letters**

journal homepage: www.elsevier.com/locate/aml

## Phylogenetic diversity and the maximum coverage problem

### Vincent Moulton<sup>a,\*</sup>, Andreas Spillner<sup>b</sup>

<sup>a</sup> School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK

<sup>b</sup> Department of Mathematics and Computer Science, Greifswald University, 17489 Greifswald, Germany

#### ARTICLE INFO

Article history: Received 23 March 2009 Accepted 23 March 2009

Keywords: Phylogenetic diversity Greedoid Hypergraph Maximum coverage

#### ABSTRACT

For a weighted hypergraph  $(H, \omega)$ , with vertex set X, edge set E, and weighting  $\omega : E \to \mathbb{R}_{\geq 0}$ , the maximum coverage problem is to find a k-element subset  $Y \subseteq X$  that maximizes the total weight of those edges that have non-empty intersection with Y among all k-element subsets of X. Such a subset Y is called optimal. Recently, within the field of phylogenetics it has been shown that for certain weighted hypergraphs coming from phylogenetic trees the collection of optimal subsets of X forms a so-called strong greedoid. We call hypergraphs having this latter property *strongly greedy*. In this note we characterize the *r*-uniform hypergraphs H with unit edge weights that are strongly greedy in the case where *r* is a prime number.

© 2009 Elsevier Ltd. All rights reserved.

#### 1. Introduction

Recall that a hypergraph H = (X, E) consists of a finite non-empty set X of *vertices* and a collection E of subsets of X, called *hyperedges* or *edges* (cf. [1]). Let  $\sim$  be the binary relation on X defined by taking the transitive closure of the relation consisting of those pairs (x, y),  $x, y \in X$ , for which there exists some edge  $e \in E$  with  $\{x, y\} \subseteq e$  or x = y. The *connected components* of H are the equivalence classes of  $\sim$ . A *weighted* hypergraph  $(H, \omega)$  is a hypergraph H = (X, E) together with a map  $\omega$  that assigns a non-negative real number  $\omega(e)$  to every edge  $e \in E$ . The *score*,  $\sigma(Y) = \sigma_{(H,\omega)}(Y)$ , of any subset  $Y \subseteq X$  relative to  $(H, \omega)$  is the total weight of those edges that have a non-empty intersection with Y.

In the maximum coverage problem, one aims to find subsets  $Y \subseteq X$  relative to a weighted hypergraph ( $H = (X, E), \omega$ ) that are optimal, that is, subsets Y of X having maximum score amongst all |Y|-element subsets of X [2]. The maximum coverage problem is a well-studied problem in combinatorial optimization and appears in various applications, for example, in circuit layout, scheduling and facility location (see e.g. [3]). Various algorithms have been devised for its solution, among them a simple greedy algorithm that starts with an optimal subset of size 1, and, at each step, adds a vertex such that the increase in the score of the resulting subset is maximum. Although even very restricted versions of the maximum coverage problem are NP-hard [4], in [2] it is shown that this greedy algorithm is guaranteed to yield a solution that is within (1 - 1/e) of the optimal score, and it appears unlikely that any algorithm can do significantly better [5].

Recently, in the field of phylogenetics [6], studies have appeared on applying the greedy algorithm to a special class of hypergraphs called *hierarchies*, hypergraphs H = (X, E) for which  $e_1 \cap e_2 \in \{\emptyset, e_1, e_2\}$  holds for all  $e_1, e_2 \in E$ . Weighted hierarchies are of interest in phylogenetics as they correspond to edge-weighted rooted phylogenetic trees (see [6, p. 52] for more details, and Fig. 1(a) for a simple example). Moreover, in this setting, the score  $\sigma(Y)$  of any subset  $Y \subseteq X$  is known as the *phylogenetic diversity* of Y (which is simply the length of the subtree spanned by the elements in Y and the root in the corresponding tree – see e.g. Fig. 1(b)), a quantity that has applications in biodiversity conservation [7].

\* Corresponding author. *E-mail addresses:* vincent.moulton@cmp.uea.ac.uk (V. Moulton), anspillner@googlemail.com (A. Spillner).





<sup>0893-9659/\$ –</sup> see front matter s 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2009.03.017



**Fig. 1.** (a) A rooted phylogenetic tree *T* corresponding to a weighted hierarchy on the set  $\{x_1, \ldots, x_5\}$  with root *r*. Each edge of *T* corresponds to an edge in the hierarchy (e.g. *f* corresponds to  $\{x_3, x_4, x_5\}$ , having weight 2). (b) The phylogenetic diversity of the set  $\{x_1, x_3, x_4\}$  equals 12, the total weight of the induced rooted subtree.

In [8,9] it is shown that the greedy algorithm always yields optimal solutions to the maximum coverage problem for weighted hierarchies, and in [10, Theorem 3.2] it is shown that the collection  $\mathcal{O}_{(H,\omega)}$  of optimal subsets of *X* (where subsets can have any size between 0 and |X|) even forms a *strong greedoid*, i.e. it satisfies the following conditions:

(S1) For every  $Y \in \mathcal{O}_{(H,\omega)}$ ,  $Y \neq \emptyset$ , there exists at least one  $y \in Y$  such that  $(Y \setminus \{y\}) \in \mathcal{O}_{(H,\omega)}$ .

(S2) For every  $Y_1, Y_2 \in \mathcal{O}_{(H,\omega)}$  such that  $|Y_1| + 1 = |Y_2|$  there exists at least one  $y \in Y_2 \setminus Y_1$  with the property that  $(Y_1 \cup \{y\}) \in \mathcal{O}_{(H,\omega)}$  and  $(Y_2 \setminus \{y\}) \in \mathcal{O}_{(H,\omega)}$ .

Note that strong greedoids were introduced to provide a framework for optimization problems where the greedy algorithm is compatible with the structure of the optimal sets [11–13].

Intriguingly, it is not hard to show using [10, Theorem 3.2] that hierarchies H are in fact characterized by the property that  $\mathcal{O}_{(H,\omega)}$  is a strong greedoid for *any* weighting  $\omega$  of H. Motivated by this fact as well as recent extensions of phylogenetic diversity to non-hierarchical structures [14,15], in this note we study weighted hypergraphs  $(H, \omega)$  for which  $\mathcal{O}_{(H,\omega)}$  is a strong greedoid, which we call *strongly greedy* hypergraphs for short. In particular, although it appears to be an interesting but difficult problem to characterize strongly greedy hypergraphs in general, restricting our attention to r-uniform hypergraphs H (hypergraphs in which every edge has cardinality  $r \in \mathbb{N}$  [1, p. 3]) with *unit* edge weights, and noting that a *clique* in H is a subset  $C \subseteq X$  such that every r-element subset of C is an edge of H, we present a proof for the following result.

**Theorem 1.1.** Let H = (X, E) be an r-uniform hypergraph. If every connected component of H is a clique, then, denoting by **1** the weight function that assigns weight 1 to every edge in H, the hypergraph (H, 1) is strongly greedy. Moreover, if r is prime and (H, 1) is strongly greedy, then every connected component of H is a clique.

Before presenting the proof of this result, we close this section by noting that for r not prime, there exist r-uniform hypergraphs that are strongly greedy in which not every connected component is a clique. Indeed, it is straight-forward to check that the 4-uniform hypergraph H = (X, E) with  $X = \{a_1, \ldots, a_4, b_1, \ldots, b_4\}$  and E consisting of the following edges:

- $\{a_1, a_2, b_1, b_2\} \; \{a_2, a_3, b_2, b_3\} \; \{a_1, a_2, b_3, b_4\} \; \{a_2, a_3, b_1, b_4\} \; \{a_1, a_2, a_3, a_4\}$
- $\{a_1, a_3, b_1, b_3\} \{a_2, a_4, b_2, b_4\} \{a_1, a_3, b_2, b_4\} \{a_2, a_4, b_1, b_3\} \{b_1, b_2, b_3, b_4\}$
- $\{a_1, a_4, b_1, b_4\} \{a_3, a_4, b_3, b_4\} \{a_1, a_4, b_2, b_3\} \{a_3, a_4, b_1, b_2\}$

is strongly greedy, although it has only one connected component, namely *X*, which is not a clique since *H* has less then  $\binom{8}{4} = 70$  edges. Even so, this hypergraph is still highly symmetric, and so it could be of interest to understand which highly symmetric *r*-uniform hypergraphs yield strong greedoids in the case where *r* is not a prime.

#### 2. Proof of Theorem 1.1

First note that, for any hypergraph H,  $\mathcal{O}_{(H,1)}$  contains at least one set of size k for every  $k \in \{0, 1, ..., |X|\}$ . Hence, if  $\mathcal{O}_{(H,1)}$  satisfies (S2), then it also satisfies (S1), and so  $(H, \mathbf{1})$  is strongly greedy if and only if  $\mathcal{O}_{(H,1)}$  satisfies (S2).

Now suppose that *H* is a hypergraph in which every connected component of *H* is a clique. We show that (H, 1) is strongly greedy. Let  $C_1, \ldots, C_l$  be the connected components of *H*. Fix an arbitrary  $k \in \{0, 1, \ldots, |X| - 1\}$ . Let  $A, B \in \mathcal{O} = \mathcal{O}_{(H,1)}$ , |A| = |B| - 1 = k. For  $1 \le i \le l$  define  $A_i = C_i \cap A$  and  $B_i = C_i \cap B$ . Fix an arbitrary  $x \in B \setminus A$  and let *j* be such that  $x \in C_j$ . Define  $A' = A \cup \{x\}$  and  $B' = B \setminus \{x\}$ .

Since  $A, B \in \mathcal{O}$ , we must have  $\sigma(B') \leq \sigma(A)$  and  $\sigma(A') \leq \sigma(B)$ . Moreover, since

$$\sigma(B') = \sigma(B) - \binom{|C_j \setminus B_j|}{r-1} \quad \text{and} \quad \sigma(A') = \sigma(A) + \binom{|C_j \setminus A_j| - 1}{r-1}$$

both clearly hold, it follows that

$$\binom{|\mathcal{C}_j \setminus A_j| - 1}{r - 1} \leq \sigma(B) - \sigma(A) \leq \binom{|\mathcal{C}_j \setminus B_j|}{r - 1}.$$

Download English Version:

# https://daneshyari.com/en/article/1710030

Download Persian Version:

https://daneshyari.com/article/1710030

Daneshyari.com