The decomposition method for Cauchy reaction-diffusion problems

D. Lesnic*
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK

Received 24 October 2005; received in revised form 25 April 2006; accepted 11 May 2006

Abstract

In this paper, the solution of Cauchy problems for the reaction-diffusion equation is obtained using the decomposition method. In the case when the reaction parameter is time-dependent only, an analytical solution in series form can be derived, otherwise symbolic numerical computations may need to be performed.

(C) 2006 Elsevier Ltd. All rights reserved.

Keywords: Cauchy problems; Decomposition method; Reaction-diffusion equation; Reaction parameter; Series solution

1. Introduction

In this paper, we consider the one-dimensional, time-dependent reaction-diffusion equation

$$
\begin{equation*}
\frac{\partial w}{\partial t}(x, t)=D \frac{\partial^{2} w}{\partial x^{2}}(x, t)+p(x, t) w(x, t), \quad(x, t) \in \Omega \subset R^{2} \tag{1}
\end{equation*}
$$

where w is the concentration, p is the reaction parameter and $D>0$ is the diffusion coefficient, subject to the initial or boundary conditions

$$
\begin{align*}
& w(x, 0)=g(x), \quad x \in R \tag{2}\\
& w(0, t)=f_{0}(t), \quad \frac{\partial w}{\partial x}(0, t)=f_{1}(t), \quad t \in R . \tag{3}
\end{align*}
$$

The problem given by Eqs. (1) and (2) is called the characteristic Cauchy problem in the domain $\Omega=R \times R_{+}$, whilst the problem given by Eqs. (1) and (3) is called the non-characteristic Cauchy problem in the domain $\Omega=R_{+} \times R$.

The solution of these problems is attempted using the Adomian decomposition method (ADM), as described next.

2. The decomposition method

Defining the partial differential operators $L_{t}=\partial / \partial t$ and $L_{x x}=\partial^{2} / \partial x^{2}$, then Eq. (1) can be rewritten as

$$
\begin{equation*}
L_{t} w=D L_{x x} w+p I w, \tag{4}
\end{equation*}
$$

where I is the identity operator.

[^0]Let us formally define the left-inverse integral operators, [1,2],

$$
\begin{equation*}
L_{t}^{-1}=\int_{0}^{t} \mathrm{~d} t^{\prime}, \quad L_{x x}^{-1}=\int_{0}^{x} \mathrm{~d} x^{\prime} \int_{0}^{x^{\prime}} \mathrm{d} x^{\prime \prime} \tag{5}
\end{equation*}
$$

We then seek the solution of Eq. (4) in the form of the decomposition series

$$
\begin{equation*}
w(x, t)=\sum_{n=0}^{\infty} w_{n}(x, t), \quad(x, t) \in \Omega \tag{6}
\end{equation*}
$$

where the components ($\left.w_{n}\right)_{n \geq 0}$ satisfy the recursive relationships

$$
\begin{equation*}
w_{0}(x, t)=g(x), \quad w_{n+1}(x, t)=L_{t}^{-1}\left[D L_{x x}+p(x, t) I\right] w_{n}(x, t), \quad n \geq 0 \tag{7}
\end{equation*}
$$

for the characteristic Cauchy problem (1) and (2), and

$$
\begin{equation*}
w_{0}(x, t)=f_{0}(t)+x f_{1}(t), \quad w_{n+1}(x, t)=\frac{1}{D} L_{x x}^{-1}\left[L_{t}-p(x, t) I\right] w_{n}(x, t), \quad n \geq 0 \tag{8}
\end{equation*}
$$

for the non-characteristic Cauchy problem (1) and (3).

2.1. The case $p=$ constant

In this case, Eq. (1) becomes

$$
\begin{equation*}
\frac{\partial w}{\partial t}(x, t)=D \frac{\partial^{2} w}{\partial x^{2}}(x, t)+p w(x, t), \quad(x, t) \in \Omega . \tag{9}
\end{equation*}
$$

Applying (7) we obtain

$$
\begin{aligned}
& w_{1}(x, t)=L_{t}^{-1}\left[D L_{x x}+p I\right] w_{0}(x, t)=\left(D g^{\prime \prime}(x)+p g(x)\right) t, \\
& w_{2}(x, t)=L_{t}^{-1}\left[D L_{x x}+p I\right] w_{1}(x, t)=\left(D^{2} g^{\prime \prime \prime \prime}(x)+2 D p g^{\prime \prime}(x)+p^{2} g(x)\right) \frac{t^{2}}{2!}
\end{aligned}
$$

and, in general, we observe that

$$
w_{n}(x, t)=\left(\sum_{l=0}^{n} C_{n}^{l} D^{l} p^{n-l} g^{(2 l)}(x)\right) \frac{t^{n}}{n!}, \quad n \geq 0
$$

where $C_{n}^{l}=\frac{n!}{l!(n-l)!}$. Then based on (6) we obtain the ADM partial t-solution of the problem (2) and (9) given by

$$
\begin{equation*}
w(x, t)=\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n} C_{n}^{l} D^{l} p^{n-l} g^{(2 l)}(x)\right) \frac{t^{n}}{n!}, \quad(x, t) \in R \times R_{+} . \tag{10}
\end{equation*}
$$

Applying now (8) we obtain

$$
\begin{aligned}
w_{1}(x, t)= & \frac{1}{D} L_{x x}^{-1}\left[L_{t}-p I\right] w_{0}(x, t)=\frac{1}{D}\left[\left(f_{0}^{\prime}(t)-p f_{0}(t)\right) \frac{x^{2}}{2!}+\left(f_{1}^{\prime}(t)-p f_{1}(t)\right) \frac{x^{3}}{3!}\right], \\
w_{2}(x, t)= & \frac{1}{D} L_{x x}^{-1}\left[L_{t}-p I\right] w_{1}(x, t)=\frac{1}{D^{2}}\left[\left(f_{0}^{\prime \prime}(t)-2 p f_{0}^{\prime}(t)\right.\right. \\
& \left.\left.+p^{2} f_{0}(t)\right) \frac{x^{4}}{4!}+\left(f_{1}^{\prime \prime}(t)-2 p f_{1}^{\prime}(t)+p^{2} f_{1}(t)\right) \frac{x^{5}}{5!}\right],
\end{aligned}
$$

and, in general, we observe that

$$
w_{n}(x, t)=\frac{1}{D^{n}}\left(\sum_{l=0}^{n} C_{n}^{l}(-p)^{n-l} f_{0}^{(l)}(t) \frac{x^{2 n}}{(2 n)!}+\sum_{l=0}^{n} C_{n}^{l}(-p)^{n-l} f_{1}^{(l)}(t) \frac{x^{2 n+1}}{(2 n+1)!}\right), \quad n \geq 0
$$

https://daneshyari.com/en/article/1710332

Download Persian Version:

https://daneshyari.com/article/1710332

Daneshyari.com

[^0]: * Tel.: +44 (0)1133435181; fax: +44 (0)1133435090.

 E-mail address: amt5ld@ amsta.leeds.ac.uk.

