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The decomposition method for Cauchy reaction–diffusion problems
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Abstract

In this paper, the solution of Cauchy problems for the reaction–diffusion equation is obtained using the decomposition method.
In the case when the reaction parameter is time-dependent only, an analytical solution in series form can be derived, otherwise
symbolic numerical computations may need to be performed.
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1. Introduction

In this paper, we consider the one-dimensional, time-dependent reaction–diffusion equation

∂w

∂ t
(x, t) = D

∂2w

∂x2
(x, t)+ p(x, t)w(x, t), (x, t) ∈ Ω ⊂ R2, (1)

where w is the concentration, p is the reaction parameter and D > 0 is the diffusion coefficient, subject to the initial
or boundary conditions

w(x, 0) = g(x), x ∈ R (2)

w(0, t) = f0(t),
∂w

∂x
(0, t) = f1(t), t ∈ R. (3)

The problem given by Eqs. (1) and (2) is called the characteristic Cauchy problem in the domain Ω = R × R+,
whilst the problem given by Eqs. (1) and (3) is called the non-characteristic Cauchy problem in the domain
Ω = R+ × R.

The solution of these problems is attempted using the Adomian decomposition method (ADM), as described next.

2. The decomposition method

Defining the partial differential operators Lt = ∂/∂ t and Lx x = ∂2/∂x2, then Eq. (1) can be rewritten as

Ltw = DLx xw + pIw, (4)

where I is the identity operator.
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Let us formally define the left-inverse integral operators, [1,2],

L−1
t =

∫ t

0
dt ′, L−1

x x =
∫ x

0
dx ′

∫ x ′

0
dx ′′. (5)

We then seek the solution of Eq. (4) in the form of the decomposition series

w(x, t) =
∞∑

n=0

wn(x, t), (x, t) ∈ Ω , (6)

where the components (wn)n≥0 satisfy the recursive relationships

w0(x, t) = g(x), wn+1(x, t) = L−1
t [DLx x + p(x, t)I ]wn(x, t), n ≥ 0 (7)

for the characteristic Cauchy problem (1) and (2), and

w0(x, t) = f0(t)+ x f1(t), wn+1(x, t) = 1

D
L−1

x x [Lt − p(x, t)I ]wn(x, t), n ≥ 0 (8)

for the non-characteristic Cauchy problem (1) and (3).

2.1. The case p = constant

In this case, Eq. (1) becomes

∂w

∂ t
(x, t) = D

∂2w

∂x2
(x, t)+ pw(x, t), (x, t) ∈ Ω . (9)

Applying (7) we obtain

w1(x, t) = L−1
t [DLx x + pI ]w0(x, t) = (Dg′′(x)+ pg(x))t,

w2(x, t) = L−1
t [DLx x + pI ]w1(x, t) = (D2g′′′′(x)+ 2Dpg′′(x)+ p2g(x))

t2

2! ,
and, in general, we observe that

wn(x, t) =
(

n∑
l=0

Cl
n Dl pn−l g(2l)(x)

)
tn

n! , n ≥ 0,

where Cl
n = n!

l!(n−l)! . Then based on (6) we obtain the ADM partial t-solution of the problem (2) and (9) given by

w(x, t) =
∞∑

n=0

(
n∑

l=0

Cl
n Dl pn−l g(2l)(x)

)
tn

n! , (x, t) ∈ R × R+. (10)

Applying now (8) we obtain

w1(x, t) = 1

D
L−1

x x [Lt − pI ]w0(x, t) = 1

D

[
( f ′

0(t)− p f0(t))
x2

2! + ( f ′
1(t)− p f1(t))

x3

3!
]
,

w2(x, t) = 1

D
L−1

x x [Lt − pI ]w1(x, t) = 1

D2

[
( f ′′

0 (t)− 2 p f ′
0(t)

+ p2 f0(t))
x4

4! + ( f ′′
1 (t)− 2 pf ′

1(t)+ p2 f1(t))
x5

5!
]
,

and, in general, we observe that

wn(x, t) = 1

Dn

(
n∑

l=0

Cl
n(−p)n−l f (l)0 (t)

x2n

(2n)! +
n∑

l=0

Cl
n(−p)n−l f (l)1 (t)

x2n+1

(2n + 1)!

)
, n ≥ 0.
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