Non-existence of positive solutions of some elliptic equations in positive-type domains

Tianqing An
College of Science, Hohai University, Nanjing, 210098, PR China

Received 8 February 2005; received in revised form 3 July 2006; accepted 10 July 2006

Abstract

In this work we prove a non-existence result for a positive solution of a Dirichlet boundary value problem in a class of domains that are more general than star-shaped ones. Our result extends some earlier non-existence results for the star-shaped case. We also present an example of a domain which satisfies our conditions but not star-shaped essentially.

(C) 2006 Elsevier Ltd. All rights reserved.

Keywords: Non-existence; Positive solution; Pohozaev-type identity; Star-shaped domain; Positive-type domain

1. A non-existence result for elliptic equations

Let $\Omega \subset \mathbf{R}^{n}$ be a smooth domain; consider the following elliptic boundary value problem:

$$
\begin{cases}-\Delta u=u|u|^{\alpha-1}+\lambda u & \text { in } \Omega, \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

If Ω is star-shaped, based on the work of Pohozaev [5], there have been many non-existence results for positive solution of (1.1) with supercritical growth (see [5-7]). Recently some non-existence results appeared for the case that Ω is not necessarily star-shaped; see for example [4]. It is still an interesting problem to consider the non-existence results related to the growth and domain geometry. In [1-3], the author of this work introduced a class of hypersurfaces that are more general than star-shaped ones. Motivated by the ideas of [1-3], in this work we discuss the non-existence of a positive solution of (1.1) in a new class of domains called positive-type domains. Our results extend some earlier related works for the star-shaped case.

We firstly consider the solutions of the elliptic boundary value problem

$$
\begin{cases}-\Delta u=f(u) & \text { in } \Omega \tag{1.2}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $f \in C\left(R^{1}, R^{1}\right), \Omega \subset \mathbf{R}^{n}$ is a domain with smooth boundary $\partial \Omega$. Let $F(x)=\int_{0}^{x} f(s) \mathrm{d} s$. Denote by $\langle\cdot, \cdot\rangle$ the usual inner product of \mathbf{R}^{n} and $v(x)$ the outward normal to $\partial \Omega$ at x.

[^0]Lemma 1.1. Suppose that $V(x)=\left(V_{1}(x), \ldots, V_{n}(x)\right)$ is a C^{1} vector field on \mathbf{R}^{n} and $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ is a solution of (1.2). Then

$$
\begin{aligned}
& \int_{\Omega} u \operatorname{div} V(x) \mathrm{d} x=-\int_{\Omega}\langle V(x), \nabla u\rangle \mathrm{d} x, \\
& \int_{\Omega} F(u) \operatorname{div} V(x) \mathrm{d} x=-\int_{\Omega} f(u)\langle V(x), \nabla u\rangle \mathrm{d} x .
\end{aligned}
$$

Proof. Since $u(x)=0$ and $F(u(x))=0$ for $x \in \partial \Omega$, by the divergence theorem, one has

$$
\begin{aligned}
0 & =\int_{\partial \Omega}\langle u(x) V(x), v(x)\rangle \mathrm{d} s=\int_{\Omega} \operatorname{div}(u(x) V(x)) \mathrm{d} x \\
& =\int_{\Omega} \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(u(x) V_{i}(x)\right)=\int_{\Omega} u \operatorname{div} V(x) \mathrm{d} x+\int_{\Omega}\langle V(x), \nabla u\rangle \mathrm{d} x,
\end{aligned}
$$

and

$$
\begin{aligned}
0 & =\int_{\partial \Omega}\langle F(u(x)) V(x), v(x)\rangle \mathrm{d} s
\end{aligned}=\int_{\Omega} \operatorname{div}(F(u(x)) V(x)) \mathrm{d} x .
$$

The proof is complete.
On the basis of Lemma 1.1, we prove an identity for the solutions of (1.2).
Theorem 1.2. Suppose $V(x)$ is a linear vector field on \mathbf{R}^{n} with the form

$$
V(x)=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \vdots & \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right) x .
$$

If $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ is a solution of (1.2), then

$$
\begin{equation*}
2 \sum_{i=1}^{n} a_{i i} \int_{\Omega} F(u) \mathrm{d} x-\sum_{i=1}^{n} a_{i i} \int_{\Omega} u f(u) \mathrm{d} x+2 \int_{\Omega}\langle V(\nabla u), \nabla u\rangle \mathrm{d} x=\int_{\partial \Omega}\langle V(x), \nu(x)\rangle|\nabla u|^{2} \mathrm{~d} s . \tag{1.3}
\end{equation*}
$$

Proof. By divergence theorem and Lemma 1.1,

$$
\begin{aligned}
& \left.\int_{\partial \Omega}\langle V(x), v(x)\rangle|\nabla u|^{2} \mathrm{~d} s=\left.\int_{\partial \Omega}\langle | \nabla u\right|^{2} V(x), v(x)\right\rangle \mathrm{d} s=\int_{\Omega} \operatorname{div}\left(|\nabla u|^{2} V(x)\right) \mathrm{d} x \\
& =\int_{\Omega}\left(\sum_{i=1}^{n} a_{i i}|\nabla u|^{2}+2 \sum_{j=1}^{n}\left(\frac{\partial u}{\partial x_{j}} \sum_{i=1}^{n} V_{i}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right)\right) \mathrm{d} x \\
& =\sum_{i=1}^{n} a_{i i} \int_{\Omega} u f(u) \mathrm{d} x-2 \int_{\Omega} \sum_{j=1}^{n} u \frac{\partial}{\partial x_{j}}\left(\sum_{i=1}^{n} V_{i}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right) \mathrm{d} x \\
& =\sum_{i=1}^{n} a_{i i} \int_{\Omega} u f(u) \mathrm{d} x-2 \int_{\Omega} u \sum_{j=1}^{n} \sum_{i=1}^{n}\left(a_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+V_{i}(x) \frac{\partial}{\partial x_{i}} \frac{\partial^{2} u}{\partial x_{j}^{2}}\right) \mathrm{d} x \\
& =\sum_{i=1}^{n} a_{i i} \int_{\Omega} u f(u) \mathrm{d} x-2 \int_{\Omega} u \operatorname{div}(V(\nabla u)) \mathrm{d} x-2 \int_{\Omega} \sum_{j=1}^{n} \sum_{i=1}^{n} u V_{i}(x) \frac{\partial}{\partial x_{i}} \frac{\partial^{2} u}{\partial x_{j}^{2}} \mathrm{~d} x \\
& =\sum_{i=1}^{n} a_{i i} \int_{\Omega} u f(u) \mathrm{d} x+2 \int_{\Omega}\langle V(\nabla u), \nabla u\rangle \mathrm{d} x+2 \int_{\Omega} \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(u V_{i}(x)\right) \frac{\partial^{2} u}{\partial x_{j}^{2}} \mathrm{~d} x
\end{aligned}
$$

https://daneshyari.com/en/article/1710362

Download Persian Version:

https://daneshyari.com/article/1710362

Daneshyari.com

[^0]: E-mail address: antq@hhu.edu.cn.

