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Tikhonov regularization for weighted total least squares problems✩
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Abstract

In this work, we study and analyze the regularized weighted total least squares (RWTLS) formulation. Our regularization of the
weighted total least squares problem is based on the Tikhonov regularization. Numerical examples are presented to demonstrate
the effectiveness of the RWTLS method.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In this work, we study the regularized weighted total least squares (RWTLS) formulation. Our regularization of the
weighted total least squares problem is based on the Tikhonov regularization [1].

For the total least squares (TLS) problem [2], the truncation approach has already been studied by Fierro et al.
[3]. In [4], Golub et al. has considered the Tikhonov regularization approach for TLS problems. They derived a
new regularization method in which stabilization enters the formulation in a natural way, and that is able to produce
regularized solutions with superior properties for certain problems in which the perturbations are large. In the present
work, we focus on RWTLS problems. We show that the RWTLS solution is closely related to the Tikhonov solution
to the weighted least squares solution.

Our work is organized as follows. In Section 2, we introduce the RWTLS formulation and study its regularizing
properties. Computational methods are described in Section 3. In Section 4, numerical examples are presented to
demonstrate the RWTLS method.
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2. The regularized weighted total least squares

A general version of Tikhonov’s formulation for the linear weighted total least squares (WTLS) problem takes the
form [5]

min
x

‖U [(A, b) − ( Ã, b̃)]V ‖F subject to b̃ = Ãx, ‖Dx‖S ≤ δ, (1)

where D is the regularization matrix, V = diag(W, γ ) with γ being a non-zero constant, U and W are nonsingular
matrices, S is a symmetric positive definite matrix with ‖y‖2

S = yTSy, and δ is a positive constant. By using the
Lagrange multiplier formulation, this problem can be rewritten as follows:

L( Ã, x, μ) = ‖U [(A, b) − ( Ã, b̃)]V ‖2
F + μ(‖Dx‖2

S − δ2), subject to b̃ = Ãx, (2)

where μ is the Lagrange multiplier, and μ is equal to zero if the inequality constraint becomes equality. The solution
x̄δ to this problem is different from the solution xWTLS to

min
x

‖U [(A, b) − ( Ã, b̃)]V ‖F subject to b̃ = Ãx, (3)

for δ less than ‖DxWTLS‖2.
Before we show the properties of the solution to (2), we have the following results about the matrix differentiation

for the matrices A, Ã, W and U .

Lemma 1.

(i)
∂ tr(W T ATUTU ÃW )

∂ Ã
= UTU AW W T (ii)

∂ tr(W T ÃTUTU AW )

∂ Ã
= UTU AW W T

(iii)
∂ tr(W T ÃTUTU ÃW )

∂ Ã
= 2UTU ÃW W T (iv)

∂ (bTUTU Ãx)

∂ Ã
= UTUbxT

(v)
∂ (xT ÃTUTUb)

∂ Ã
= UTUbxT (vi)

∂ (xT ÃTUTU Ãx)

∂ Ã
= 2UTU ÃxxT.

Proof. Since (i) is equivalent to (ii), (iv) is equivalent to (v), and (vi) is a special case of (iii), we only give the proofs
of (i) and (iii).

Let Z be a p × q matrix of differentiable functions of the m × n matrix X . If

∂ Z

∂xi j
= G E (mn)

i j H + C(E (mn)
i j )T F, i = 1, . . . , m, j = 1, . . . , n

then

∂zi j

∂ X
= GT E (pq)

i j H T + F(E (pq)

i j )TC, i = 1, . . . , p, j = 1, . . . , q,

and the converse is also true (see p. 57, Theorem 7.1 in [6]), where G = (gi j ) is a p ×m matrix, H = (hi j ) is an n ×q

matrix, C = (ci j ) is a p × n matrix, F = ( fi j ) is an m × q matrix E (kl)
i j is a k-by-l zero matrix except the (i, j)-entry

being equal to one.

For (i), we consider Y = W T ATUTU and we have ∂ tr(Y ÃW )

∂ Ã
= ∂

∂ Ã

(∑
i (Y ÃW )ii

)
= ∑

i
∂(Y ÃW )ii

∂ Ã
. Since

∂(Y ÃW )

∂ Ãi j
= Y Eij W and

∂(Y ÃW )i j

∂ Ã
= Y T Eij W T, we obtain ∂ tr(Y ÃW )

∂ Ã
= ∑

i Y T Eii W T = Y TW T. The result follows.

For (iii), we find that ∂[(U ÃW )T(U ÃW )]
∂ Ãi j

= W T ET
i j U

TU ÃW + (U ÃW )TU Eij W , and therefore we have

∂[(U ÃW )T(U ÃW )]ii

∂ Ã
= UTU ÃW ET

ii W T + UTU ÃW Eii W T. It follows that
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