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Abstract

Inequalities for a Grüss type functional in terms of Stieltjes integrals with convex integrators are given. Applications to the
Čebyšev functional are also provided.
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1. Introduction

In [3], the authors have considered the following functional:

D( f ; u) :=
∫ b

a
f (x)du(x) − [u(b) − u(a)] · 1

b − a

∫ b

a
f (t)dt, (1.1)

provided that the Stieltjes integral
∫ b

a f (x)du(x) and the Riemann integral
∫ b

a f (t)dt exist.
In [3], the following result in estimating the above functional has been obtained:

Theorem 1. Let f, u : [a, b] → R be such that u is Lipschitzian on [a, b], i.e.,

|u(x) − u(y)| ≤ L|x − y| for any x, y ∈ [a, b] (L > 0) (1.2)

and f is Riemann integrable on [a, b].
If m, M ∈ R are such that

m ≤ f (x) ≤ M for any x ∈ [a, b], (1.3)

then we have the inequality

|D( f ; u)| ≤ 1

2
L(M − m)(b − a). (1.4)

The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller quantity.
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In [2], the following result complementing the above has been obtained:

Theorem 2. Let f, u : [a, b] → R be such that u is of bounded variation on [a, b] and f is Lipschitzian with the
constant K > 0. Then we have

|D( f ; u)| ≤ 1

2
K (b − a)

b∨
a

(u). (1.5)

The constant 1
2 is sharp in the above sense.

For a function u : [a, b] → R, define the associated functions Φ,Γ and Δ by:

Φ(t) := (t − a)u(b) + (b − t)u(a)

b − a
− u(t), t ∈ [a, b]; (1.6)

Γ (t) := (t − a)[u(b) − u(t)] − (b − t)[u(t) − u(a)], t ∈ [a, b]
and

Δ(t) := u(b) − u(t)

b − t
− u(t) − u(a)

t − a
, t ∈ (a, b).

In [1], the following subsequent bounds for the functional D( f ; u) have been pointed out:

Theorem 3. Let f, u : [a, b] → R.

(i) If f is of bounded variation and u is continuous on [a, b], then

|D( f ; u)| ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
t∈[a,b]

|Φ(t)|
b∨
a

( f ),

1

b − a
sup

t∈[a,b]
|Γ (t)|

b∨
a

( f ),

1

b − a
sup

t∈(a,b)

[(t − a)(b − t)|Δ(t)|]
b∨
a

( f ).

(1.7)

(ii) If f is L-Lipschitzian and u is Riemann integrable on [a, b], then

|D( f ; u)| ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L
∫ b

a
|Φ(t)|dt,

L

b − a

∫ b

a
|Γ (t)|dt,

L

b − a

∫ b

a
(t − a)(b − t)|Δ(t)|dt .

(1.8)

(iii) If f is monotonic nondecreasing on [a, b] and u is continuous on [a, b], then

|D( f ; u)| ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫ b

a
|Φ(t)|d f (t),

1

b − a

∫ b

a
|Γ (t)|d f (t),

1

b − a

∫ b

a
(t − a)(b − t)|Δ(t)|d f (t).

(1.9)

The case of monotonic integrators is incorporated in the following two theorems [1]:
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