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Abstract

A finite set of points in the plane is described as in convex position if it forms the set of vertices of a convex polygon. This work
studies the ratio between the maximum area of convex pentagons with vertices in P and the area of the convex hull of P, where
the planar point set P is in convex position.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Ref. [2] shows that in the study of motion-planning problems in robotics by using heuristics, the largest area
polygons in a planar point set play an important role. Refs. [7,8] and [9] discuss these problems and contain the
related results.

A finite set of points in the plane is described as in convex position if it forms the set of vertices of a convex
polygon. Let P be a finite set of points in convex position in the plane; hence any subset of P is also a point set in
convex position. Denote the area of the convex hull of O C P by S(Q). For the sake of convenience we may call a
subset Q C P apolygon if Q forms the vertices of a polygon. Let

Jfr(P) := max {@ : Q C P, P isin convex position}
S(P)
O™ (n) = min{ fx(P) : |P| = n, P isin convex position}.

Ref. [1] mainly studies f5°™ (n). In this work we evaluate f5°™ (n).
Instead of considering the ratio between the area of the convex hull of a point set and the area of the convex hull
of its subset, [4—6] study the quantitative Steinitz Theorem and prove that any set whose convex hull contains a disk
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2. Main results

conv 2
Lemma 1. f,°™(5) = .
Proof. Let P be a convex 5-gon with vertices A, B, C, D, E in clockwise order. Suppose the 4-gon ABCD is a
maximum area 4-gon in P. Given two triangles, there exists a unique affine transformation which transforms one
triangle into another. So, without loss of generality we assume that A = (0,0),B = (0,1),D = (1,0),C =
(a,b) (a > 0,b > 0).Letb > 1; see Fig. 1. Indeed, when b < 1, the distance from B to the straight line AD is greater
than the distance from C to the straight line AD, and we can reflect P about a vertical line, which does not change the
ratio of the areas.

See Fig. 2. Relabel the vertices of P to ensure that the distance from C’ to the straight line A’ D’ is greater than the
distance from B’ to the straight line A’ D’, and in this way we come to the case of b > 1.

Let Q1, Q2, Q3 denote 4-gons ABCD, ABDE, ACDE respectively. Let f be the line through A and C, and f’ be
the parallel line through D. Similarly, let g be the line through B and D, and g’ be the parallel line through A. For Q
to be the maximum area 4-gon in P, E must lie completely above f” and g’. Define F = f'Ng’; then F = (abﬂ’ %)
and E € AADF, and hence P is always contained in the convex 5-gon P; = ABCDF. Since b > 1, S(Q3) > S(02);
and since S(Q1) > S(03), S(AABC) > S(AADE). Suppose E = (xo, Y0),

S(AABC) = %’ S(AADE) = _Tyo = % > _Tyo = Y0 > —a.

Then E lies above the horizontal line 4 : y = —a.
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