

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/issn/15375110

Research Paper

Image analysis operations applied to hyperspectral images for non-invasive sensing of food quality — A comprehensive review

Gamal M. ElMasry a,b,*, Shigeki Nakauchi a

- ^a Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tenpaku, Toyohashi 441-8580, Japan
- $^{
 m b}$ Suez Canal University, Faculty of Agriculture, Agricultural Engineering Department, Ismailia, Egypt

ARTICLE INFO

Article history:
Received 12 June 2015
Received in revised form
20 October 2015
Accepted 16 November 2015
Published online xxx

Keywords:
Image processing
Image analysis
Hyperspectral imaging
Multispectral imaging
Machine vision
Food quality

Image analysis involving mathematical, statistical and software programming approaches are the essential elements of any computer-integrated hyperspectral imaging systems. The theoretical and practical issues associated with the development, analysis, and application of essential image processing algorithms are explored in order to exploit hyperspectral imaging for application to food quality evaluations. The breadth of different image processing approaches adopted over the years in attempting to implement hyperspectral imaging for food quality monitoring was surveyed. Firstly, the fundamental configurations and working principles of hyperspectral systems, as well as the basic concept and structure of hyperspectral data, were described and explained. The understanding of different approaches used during image acquisition, data collection and visualisation were examined. Strategies and essential image processing routines necessary for making the appropriate decision during detection, classification, identification, quantification and/or prediction processes are presented. Examples and figures were selected to reinforce the main approach of each analysis algorithm applied in different agro-food products to answer the question "What does the user want to see in the target food samples?" The theoretical background for each algorithm was beyond the scope of this article thus only essential equations were addressed. The literature presented clearly revealed that hyperspectral imaging systems have gained a rapid interest from researchers to display the chemical structure and related physical properties of numerous types of food stuffs and hyperspectral imaging systems are expected to gain more considerably more potential and application in food processing and engineering plants.

© 2015 IAgrE. Published by Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tenpaku, Toyohashi 441-8580, Japan. Tel.: +81 532 81 5122.

Active contour model Active contour model ACM ACTIVE contour manalysis DT Distance transform UK, y, X) A hyperspectral image "hypercube" A hyperspectral image between sample and reference spectrum ACM ACM ACTIVE contour model model ACM ACTIVE contour	Nomenclature β Threshold chosen for tuning the detection rate				
ACM Active contour model ACM Active contour model ACM Active contour model ANN Artificial neural network DA Discriminant analysis DT Distance transform EDM Euclidean distance measure EDMCD Electron-multiplying charged coupled device FCM Fuzzy C-means FDR Fisher discriminant ratio FTP Fourier transform GLCM Grey level co-occurrence matrix GML Gaussian maximum likelihood IR Infrared LDA Linear discriminant analysis LDA Linear discriminant analysis LDA Linear discriminant analysis LDA Linear discriminant analysis RMS Maximum likelihood classification MLC Maximum likelihood classification MLC Multiplicative scatter correction RMS Multiplicative scatter correction RMS Neural Gas NRI Near-infrared SCO Orthogonal signal correction RMS Partial least square PCA Principle component analysis PLS Partial least square discriminant analysis QDA Quadratic discriminant analysis QDA Quadratic discriminant analysis QDA Quadratic discriminant analysis QDA Quadratic discriminant analysis QDA Spectral correlation measure SCM Spectral correlation measure SCM Spectral correlation measure SCM Spectral angle mapper VT Wavelet transform WTA Wavelet transform VTA Wavelet tr			•		
ACM Artifical neural network λ _c Sample spectrum DA Discriminant analysis Symbol DT Distance transform I(x, y) Two-dimensional sub-image EMCCD Electron-multiplying charged coupled device I(x, y) A hyperspectral image 'hypercube' FCM Fuzzy C-means I(x) Spectrum at one point in the image FDR Fisher discriminant ratio P ₀ Piskel value at position (i, j) FT Fourier transform Up Pixel value in the dark reference image GLCM Gey level co-occurrence matrix W ₁ Pixel value in the dark reference image GLM Gey level co-occurrence matrix P ₀ Pixel value in the dark reference image GLM Grunt and six simulation analysis P ₁ Spectral value at wavelength (a) GLM Multi-linear regression P ₀ Reflectance of the sample at wavelength \(a) MLR Multi-linear regression Cos(w) Factor that relates the percentage of direct and diffice light reflected at each point MC Ninciple component E(V, w) Exclude an distance PC				~ -	
ANN Artificial neural network λ _r Reference spectrum DA Discriminant analysis 1/(x, y) Two-dimensional sub-image EDM Euclidean distance measure 1/(x, y) A hyperspectral image 'hypercube' FCM Fuzzy C-means 1/(x) Spectrual aron eopoint in the image FDR Fisher discriminant ratio Pg Pixel value at position (i,i) FT Fourier transform Pg Pixel value in the dark reference image GLM Grey level co-occurrence matrix Wij Pixel value in the bark reference image GLM In navial discriminant analysis n Number of wavelengths, number of objects IR Infrared p. Spectrual value at wavelength (i) ILS-SVM Least-squares support vector machine pg ph ph pr Pixel value at wavelength, number of objects MLC Maximum likelihood classification n n number of wavelengths, number of objects pg pg pg pefector the sample at wavelength (i) pg pg pg pg pg pg pg	ACM	Active contour model	λ_t	-	
DA Discriminant analysis Symbol I(x, y) Two-dimensional sub-image Li(x, y) A hyperspectral image 'hypercube' Spectral dimension, wavelength Spectral data are position (i,i) Spectral dimension, wavelength Spectral data position (i,i) Spectral data position (i,i) Spectral data position (i,i) Spectral alter position (i,i) Spectral varienge Pixel value at position (i,i) Spectral varienge Pixel value in the white reference image Pixel value in the white reference image Pixel value in the white reference image Spectral value at wavelength Number of wavelengths, number of objects Pixel value in the white reference image Pixel value in the white re	ANN	Artificial neural network			
DT Distance transform EMCCD Electron-multiplying charged coupled device EMCCD Electron-multiplying charged coupled device FCM Fuzzy C-means FTM Fisher discriminant ratio FTM Fisher discriminant analysis FTM Fish	DA	Discriminant analysis		•	
EDMC Euclidean distance measure $ (x, y) $ who dimensional sub-image $ (x, y, \lambda) $ A hyperspectral image (hypercube) $ (x, y,$,		
EMCCD Electron-multiplying charged coupled device FCM Fuzzy C-means I(λ) A hyperspectral image "hypercube" Spectral dimension, wavelength FCM Fuzzy C-means I(λ) Spectrum at one point in the image Spectral dimension, wavelength Spectrum at one point in the image Spectrum at one point in the image Pixel value at position (i,j) Pixel value in the dark reference image Pixel value in the dark reference image Pixel value in the dark reference image Pixel value at wavelength (λ) Number of wavelengths, number of objects Pixel value at wavelength (λ) Number of wavelengths, number of objects Pixel value at wavelength (λ) Number of wavelengths, number of objects Pixel value at wavelength (λ) Number of wavelengths, number of objects Pixel value at wavelength (λ) Number of wavelengths, number of objects Pixel value at wavelength (λ) Number of wavelengths, number of objects Pixel value at wavelength (λ) Number of wavelengths, number of objects Pixel value at wavelength (λ) Number of wavelengths, number of objects Pixel value at wavelength (λ) Number of wavelengths, number of objects Pixel value at wavelength (λ) Number of wavelengths, number of objects Pixel value at wavelength (λ) Number of wavelengths, number of objects Pixel value at wavelength (λ) Pixel value at wavelength (λ) Number of wavelengths, number of objects Pixel value at wavelength (λ) Pixel value at wavelengt					
Figure 1. Figur			I(x, y, λ)		
FDR Fisher discriminant ratio P_{ij} Spectrum at one point in the image P_{ij} Fisher value at position (i.) FT Fourier transform P_{ij} Fisher value at position (i.) Fisher value at wavelength (i.				-	
For Fourier transform GLCM GLCM Grey level co-occurrence matrix GLCM GLCM GLCM GLCM GLCM GLCM GLCM GLCM GLCM GLC GLC					
GLCM Grey level co-occurrence matrix W_{ij} Fixel value in the white reference image W_{ij} Causaian maximum likelihood (ausaian maximum likelihood) W_{ij} Spectral value at wavelength λ Number of wavelengths, number of objects λ Reflectance of the sample at wavelength λ Number of wavelengths, number of objects λ Reflectance of the sample at wavelength λ and λ and λ Reflectance of the sample at wavelength λ Reflectance of the sample diffuse light arriving at the sample cos($\delta(\phi)$) Factor modulates the amount of direct light reflected at each point $E(C, c_1, c_2)$ Energy function $E(V, W)$					
GML Gaussian maximum likelihood $ P_i $ Spectral value at wavelength (λ) in Number of wavelengths, number of objects $ P_i $ Spectral value at wavelength (λ) in Number of wavelengths, number of objects $ P_i $ Reflectance of the sample at wavelength (λ) Reflectance in the sample of difference and diffuse light arriving at the sample of (λ) Reflectance in the sample of surviving at the sample of (λ) Reflectance in the sample of (λ) Reflectance in the sample of interation diffuse light arriving at the sample of (λ) Reflectance in the sample o				<u> </u>	
IR Infrared			W_{ij}	——————————————————————————————————————	
LDA Linear discriminant analysis $\rho(\lambda)$ Reflectance of the sample at wavelength λ and λ are lared support vector machine λ and λ are lared support to class in λ and λ are lared support to class in λ and λ are lared support to class in λ and λ are lared support to class in λ and λ are lared support vector machine λ and λ are lared support to class in λ and λ are lared support to class in λ and λ are lared at a antity of class having λ and λ are lared at a contract wavelength λ and λ are lared support to chass in λ and λ are lared support to chass in λ and λ are lared support to the spectral data for all pixels belonging to class i.			P_{λ}		
Lest-squares support vector machine MLC Maximum likelihood classification MLR Multi-linear regression MSC Multiplicative scatter correction MSC Miltiplicative scatter structure analysis MSC Miltiplicative scatter correction MSC Miltiplicative scatter correction MSC Miltiplicative scatter structure scatter scatter scatter structure scatter			n		
MIC Maximum likelihood classification MIR Multi-linear regression MSC Multiplicative scatter correction NG Neural Gas NR Near-infrared OSC Orthogonal signal correction PC Principle component PCA Principle component analysis PLS Partial least square discriminant analysis QDA Quadratic discriminant analysis RGB Red, green and blue ROI Region of interest S/N-ratio Signal-to-noise ratio SAM Spectral angle mapper SCM Spectral angle mapper SCM Support vector machine UV Ultraviolet VIS Visible range WT Wavelet transform WTA Wavelet texture analysis X-matrix Spectral data Y-matrix Spectral data Y-matrix Spectral data for all pixels i Class number $\rho(\omega_i)$ Probability of class having ω_i $p(\omega_i)$ Probability of class number are for the spectral data for all pixels belonging to class i. $v(\omega_i)$ Factor trait relates the percentage of direct and difficus light arriving at the sampunt of direct light reflected at each point E(C, c_1 , c_2) Energy function E(V, W) Energy function E(V, W) Degree of neighbourhood cooperation $k_1(V,W_i)$ Degree of neighbourhood cooperation $k_2(V,W_i)$ Number of prototypes Neighbourhood range γ			$\rho(\lambda)$		
MLR Multi-linear regression MSC Multiplicative scatter correction MSC Multiplicative scatter correction MSC Multiplicative scatter correction MSC Neural Gas MR Near-infrared OSC Orthogonal signal correction PC Principle component PCA Principle component analysis PLS-DA Partial least square PLS-DA Partial least square discriminant analysis QDA Quadratic discriminant analysis RGB Red, green and blue ROI Region of interest S/N-ratio Signal-to-noise ratio SAM Spectral angle mapper SCM Spectral angle mapper SCM Spectral correlation measure SNV Standard normal variate SVW Standard normal variate SVW Ultraviolet UV Ultraviolet VIS Visible range WT Wavelet transform WTA Wavelet transform MEAN OR			α_{D}		
MSC Multiplicative scatter correction NG Neural Gas Neural Gas Near-infrared OSC Orthogonal signal correction PC Principle component PCA Principle component analysis PLS-DA Partial least square PLS-DA Partial least square discriminant analysis QDA Quadratic discriminant analysis RGB Red, green and blue ROI Region of interest S/N-ratio Signal-to-noise ratio SAM Spectral angle mapper SCM Spectral correlation measure SNV Standard normal variate SVM Support vector machine UV Ultraviolet UV Ultraviolet UV Wavelet transform WTA Wavelet transform WFA Wa					
NG Neural Gas NR Near-infrared OSC Orthogonal signal correction PC Principle component PCA Principle component analysis PLS-DA Partial least square PLS-DA Partial least square discriminant analysis QDA Quadratic discriminant analysis RGB Red, green and blue ROI Region of interest S/N-ratio Signal-to-noise ratio SNV Standard normal variate SVM Support vector machine UV Ultraviolet UV Ultraviolet UV Ultraviolet VIS Visible range WT Wavelet texture analysis V-MATIX Real reference values of quality traits i Class number WTA Wavelet texture analysis V-Marrix Real reference values of quality traits i Class number $\rho(\omega_i)$ Probability of class having ω_i $\rho(\omega_i)$ Probability of class having ω_i $\rho(\omega_i)$ Probability of class having ω_i Mean of the covariance matrix in class ω_i $\rho(\omega_i)$ Mean of the covariance matrix in class ω_i $\rho(\omega_i)$ Mean of the covariance matrix in class ω_i $\rho(\omega_i)$ Probability of class having ω_i Mean of columns in the image $\rho(\omega_i)$ Probability of class having ω_i Mean of the covariance matrix in class ω_i $\rho(\omega_i)$ Mean of the covariance matrix in class ω_i $\rho(\omega_i)$ Mean of the covariance matrix in class ω_i $\rho(\omega_i)$ Probability of class having ω_i $\rho(\omega_i)$ Probability of class having ω_i $\rho(\omega_i)$ Mean of the covariance matrix in class ω_i $\rho(\omega_i)$ Mean of the covariance matrix in class ω_i $\rho(\omega_i)$ Probability of class having ω_i $\rho(\omega_i)$ Probability of class h			$\cos(\varphi)$	Factor modulates the amount of direct light	
NIR Near-infrared $E(C, c_1, c_2)$ Energy function SCC Orthogonal signal correction SCC Orthogonal signal correction SCC Orthogonal signal correction SCC Principle component SCC Principle component analysis SCC Partial least square SCC Partial least square discriminant analysis SCC Post S					
OSC Orthogonal signal correction $d = E(V, W)$ Energy function $d = E(V, W)$ English entry $d = E(V, W)$ Engrey function $d =$					
PC Principle component $h_{\gamma}(r, V, W_c)$ Degree of neighbourhood cooperation $h_{\gamma}(r, V, W_c)$ Number of prototypes $h_{\gamma}($			E(V, W)	Energy function	
PCA Principle component analysis $h_r(V, W_c)$ Degree of helmotourhood cooperation $h_r(V, W_c)$ Number of prototypes $h_r(V, W_c)$ Number of prototype objective function $h_r(V, W_c)$ Number of prototype objective function $h_r(V, W_c)$ Number of prototype objective function $h_r(V, W_c)$ Number of prototype of the centre object $h_r(V, W_c)$ Number of prototype of the centre object $h_r(V, W_c)$ Number of prototype of the centre object $h_r(V, W_c)$ Number of prototype of the centre object $h_r(V, W_c)$ Number of prototype of the centre object $h_r(V, W_c)$ Number of prototype of the centre object $h_r(V, W_c)$ Number of prototype of the centre object $h_r(V, W_c)$ Number of prototype of the centre object $h_r(V, W_c)$ Number of prototype of the centre object $h_r(V, W_c)$			d	Euclidean distance	
PLS Partial least square PLS-DA Partial least square discriminant analysis QDA Quadratic discriminant analysis RGB Red, green and blue ROI Region of interest S/N-ratio Signal-to-noise ratio SAM Spectral angle mapper SCM Spectral correlation measure SIV Standard normal variate SVW Support vector machine UV Ultraviolet VIS Visible range WT Wavelet transform WTA Wavelet texture analysis X-matrix Spectral data Y-matrix Real reference values of quality traits i Class number ω_i Spectral data matrix of each pixel belonging to class i $ \Sigma_i^- $ Inverse of the covariance matrix in class ω_i Σ_i^- Mean vector of the spectral data for all pixels belonging to class i. Pixel Value and blue γ Neighbourhood range γ Nuinber of clusters γ Number of rows in the image γ Number of columns in the image γ Number of columns in the image γ Number of columns in			$h_{\gamma}(r,V,W)$	c) Degree of neighbourhood cooperation	
PLS-DA Partial least square discriminant analysis QDA Quadratic discriminant analysis RGB Red, green and blue ROI Region of interest x_k kth p-dimensional data vector objective function x_k kth p-dimensional data vector x_k kth p-dimensional data vector x_k because x_k in cluster x_k in cluster x_k in cluster x_k in cluster x_k and cluster x_k support vector machine x_k with x_k perturbing exponent x_k and cluster x_k with x_k and cluster x_k and cluster x_k and cluster x_k with x_k and of rows in the GLCM x_k wavelet texture analysis x_k when x_k dean vector of class having x_k in Class x_k matrix x_k Real reference values of quality traits in Class x_k cluster x_k and cluster x_k when x_k deviation of columns in the image x_k standard deviation of columns in the image x_k in Class x_k and cluster x_k when x_k deviation of columns in GLCM x_k when x_k deviation of columns in the image x_k standard deviation of columns in the im			$k_r(V,W_c)$	Number of prototypes	
QDA Quadratic discriminant analysis RGB Red, green and blue ROI Region of interest S/N-ratio Signal-to-noise ratio SAM Spectral angle mapper SCM Spectral correlation measure SNV Standard normal variate SVM Support vector machine UV Ultraviolet VIS Visible range WT Wavelet transform WTA Wavelet texture analysis X-matrix Spectral data Y-matrix Real reference values of quality traits i Class number ω_i Spectral data matrix of each pixel belonging to class i $ \Sigma_i $ Determinant of the covariance matrix in class ω_i Σ_i^{-1} Inverse of the covariance matrix of class ω_i m_i Mean vector of the spectral data for all pixels belonging to class i. $ U,V,V\rangle$ Weighted within group sum of squared error objective function objective function λ_k kth p-dimensional data vector λ_k with p-dimensional data vector λ_k kth p-dimensional data vector λ_k begree of the centre of cluster i λ_k begree of membership of λ_k in cluster centre v_i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluste			γ	Neighbourhood range	
RGB Red, green and blue ROI Region of interest S/N-ratio Signal-to-noise ratio SAM Spectral angle mapper SCM Spectral correlation measure SVM Support vector machine UV Ultraviolet VIS Visible range WT Wavelet transform WTA Wavelet texture analysis X-matrix Spectral data Y-matrix Real reference values of quality traits i Class number ω_i Spectral data matrix of each pixel belonging to class i $p(\omega_i)$ Probability of class having ω_i Σ_i^{-1} Inverse of the covariance matrix in class ω_i Σ_i^{-1} Inverse of the covariance matrix in class ω_i m_i Mean vector of the spectral data for all pixels belonging to class i. λ_k kth p-dimensional data vector Prototype of the centre of cluster i Degree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster i λ_k begree of membership of λ_k in cluster of λ_k and cluster λ_k begree of membership of λ_k			J(U,V)	Weighted within group sum of squared error	
ROI Region of interest S/N -ratio Signal-to-noise ratio S/N -ratio Signal-to-noise ratio S/N -ratio Signal-to-noise ratio S/N -ratio Signal-to-noise ratio S/N -considering mapper S/N -consi		· · · · · · · · · · · · · · · · · · ·		objective function	
S/N-ratio Signal-to-noise ratio v_i Prototype of the centre of cluster i SAM Spectral angle mapper i v_i Degree of membership of x_k in cluster i i Degree of membership of x_k in cluster i i Degree of membership of x_k in cluster i i Degree of membership of x_k in cluster i i Degree of membership of x_k in cluster i i Degree of membership of x_k in cluster i i Distance measure between object x_k and cluster centre v_i Distance measure between object x_k and cluster i i Direction angle $(0^\circ, 45^\circ, 90^\circ, \text{ or } 135^\circ)$ Mean of columns in the GLCM i Mean of rows in the GLCM i Mean of columns in the GLCM i Mean of columns in the GLCM i Standard deviation of rows in GLCM i Standard deviation of columns in the image i Number of rows in the image i Number of columns in the image i Number of columns in the image i Direction angle i Standard deviation of columns in GLCM i Standard deviation of columns in GLCM i Standard deviation of columns in the image i Number of columns in the image i Number of columns in the image i Direction angle i Standard deviation of columns in the image i Number of columns in the image i Number of columns in the image i Direction angle i Standard deviation of columns in the image i Number			x_k	kth p-dimensional data vector	
SAM Spectral angle mapper SCM Spectral correlation measure SCM Spectral correlation measure SCM Support vector machine SCM Support vector SCM Support vector machine SCM Support vector SCM Support vector machine SCM Support SCM Support SCM Support vector machine SCM Support SCM Support SCM Support SCM Support SCM Support SCM Suppo			v_i	Prototype of the centre of cluster i	
SCM Spectral angle mapper M Spectral angle mapper M Spectral angle mapper M Support vector measure M Support vector machine M Mean of clusters M Standard deviation of rows in GLCM Standard deviation of columns in GLCM Standard deviation of columns in GLCM Number of rows in the image M Number of columns in the image M Number of columns in the image M Support			u _{ik}	Degree of membership of x_k in cluster i	
Scale Spectral correlation measure $d(x_k, v_i)$ Distance measure between object x_k and cluster solved x_k and clus			m		
Standard normal variate $centre \ v_i$ SVM Support vector machine UV Ultraviolet VIS Visible range WT Wavelet transform WTA Wavelet texture analysis X-matrix Spectral data Y-matrix Real reference values of quality traits i Class number ω_i Spectral data matrix of each pixel belonging to class i $p(\omega_i)$ Probability of class having ω_i \sum_i^{-1} Inverse of the covariance matrix in class ω_i m_i Mean vector of the spectral data for all pixels belonging to class i. Sinch Standard deviation of rows in GLCM Manual Mean of rows in the GLCM Mean of columns in the GLCM Manual Mean of columns in GLCM Number of rows in the image Number of columns in the image Number of columns in the image L* Lightness a* Redness b* Yellowness S(λ_n) Reflectance image at the centre wavelength λ_n with a gan (a)			$d(x_k, v_i)$		
UV Ultraviolet VIS Visible range WT Wavelet transform WTA Wavelet texture analysis X-matrix Spectral data Y-matrix Real reference values of quality traits i Class number ω_i Spectral data matrix of each pixel belonging to class i $p(\omega_i)$ Probability of class having ω_i $ \Sigma_i $ Determinant of the covariance matrix in class ω_i m_i Mean vector of the spectral data for all pixels belonging to class i. C Number of clusters θ Direction angle $(0^\circ, 45^\circ, 90^\circ, \text{ or } 135^\circ)$ θ Mean of columns in the GLCM θ Mean of columns in the GLCM θ Standard deviation of columns in GLCM Number of rows in the image Number of columns in the image θ Direction angle $(0^\circ, 45^\circ, 90^\circ, \text{ or } 135^\circ)$ θ Mean of columns in the GLCM θ Standard deviation of columns in GLCM Number of rows in the GLCM θ Standard deviation of columns in GLCM Number of columns in the image θ Number of columns in the GLCM θ Standard deviation of rows in the image θ Number of columns in t				centre v _i	
VIS Visible range WT Wavelet transform WTA Wavelet texture analysis X-matrix Spectral data Y-matrix Real reference values of quality traits i Class number ω_i Spectral data matrix of each pixel belonging to class i $p(\omega_i)$ Probability of class having ω_i Σ_i^{-1} Inverse of the covariance matrix in class ω_i m_i Mean vector of the spectral data for all pixels belonging to class i. Direction angle $(0^{\circ}, 45^{\circ}, 90^{\circ}, \text{ or } 135^{\circ})$ μ_x Mean of rows in the GLCM μ_y Mean of columns in the GLCM Standard deviation of columns in GLCM Number of rows in the image Number of columns in the image $\frac{n}{\Delta E}$ Total colour change L^* Lightness a^* Redness b^* Yellowness $S(\lambda_n)$ Reflectance image at the centre wavelength λ_n S''(λ_n , g) The second difference image at the wavelength λ_n with a gan (a)		• •	С	Number of clusters	
WT Wavelet transform WTA Wavelet texture analysis X-matrix Spectral data Y-matrix Real reference values of quality traits i Class number ω_i Spectral data matrix of each pixel belonging to class i $p(\omega_i)$ Probability of class having ω_i $ \Sigma_i $ Determinant of the covariance matrix in class ω_i m_i Mean vector of the spectral data for all pixels belonging to class i. μ_X Mean of rows in the GLCM μ_Y Mean of columns in the GLCM Standard deviation of columns in GLCM Number of rows in the image Number of rows in the image Number of columns in the image ΔE Total colour change ΔE Total colour change ΔE Redness ΔE Redness ΔE Yellowness ΔE Yellowness ΔE Yellowness ΔE Yellowness ΔE Total colour change ΔE Total colour change ΔE Redness ΔE Redness ΔE Redness ΔE Yellowness ΔE Yellowness ΔE Total colour change ΔE Redness ΔE Redness ΔE Redness ΔE Yellowness ΔE Total colour change ΔE Redness ΔE Redness ΔE Yellowness ΔE Yellowness ΔE Total colour change ΔE Redness ΔE Redness ΔE Redness ΔE Total colour change ΔE Redness			θ	Direction angle (0°, 45°, 90°, or 135°)	
WTA Wavelet transform WTA Wavelet texture analysis X-matrix Spectral data Y-matrix Real reference values of quality traits i Class number ω_i Spectral data matrix of each pixel belonging to class i $p(\omega_i)$ Probability of class having ω_i $ \Sigma_i $ Determinant of the covariance matrix in class ω_i m_i Mean vector of the spectral data for all pixels belonging to class i. μ_y Mean of columns in the GLCM Standard deviation of columns in GLCM Number of rows in the image Number of columns in the image $\frac{n}{\Delta E}$ Total colour change L* Lightness a^* Redness b^* Yellowness $S(\lambda_n)$ Reflectance image at the centre wavelength λ_n with a gan (a)		- The state of the	μ_{x}		
X-matrix Spectral data Y-matrix Real reference values of quality traits i Class number ω_i Spectral data matrix of each pixel belonging to class i $p(\omega_i)$ Probability of class having ω_i $ \Sigma_i $ Determinant of the covariance matrix in class ω_i m_i Mean vector of the spectral data for all pixels belonging to class i. σ_x Standard deviation of rows in GLCM Number of rows in the image Number of columns in the image n_i Number of columns in the image L* Lightness a^* Redness b^* Yellowness $S(\lambda_n)$ Reflectance image at the centre wavelength λ_n S''(λ_n , g) The second difference image at the wavelength λ_n with a gan g .				Mean of columns in the GLCM	
Y-matrix Real reference values of quality traits i Class number ω_i Spectral data matrix of each pixel belonging to class i $p(\omega_i)$ Probability of class having ω_i $ \Sigma_i $ Determinant of the covariance matrix in class ω_i m_i Mean vector of the spectral data for all pixels belonging to class i. σ_y Standard deviation of columns in GLCM Mumber of rows in the image Number of columns in the image L* Lightness σ_y Standard deviation of columns in GLCM Mean vector of each pixel belonging to σ_y Number of columns in the image L* Lightness σ_y Standard deviation of columns in GLCM Number of rows in the image L* Lightness σ_y Standard deviation of columns in GLCM Number of rows in the image L* Lightness σ_y Standard deviation of columns in GLCM Number of rows in the image σ_y Standard deviation of columns in GLCM Number of rows in the image σ_y Standard deviation of columns in GLCM Number of rows in the image σ_y Standard deviation of columns in GLCM Number of rows in the image σ_y Standard deviation of columns in GLCM Number of rows in the image σ_y Standard deviation of columns in GLCM Number of rows in the image σ_y Standard deviation of columns in GLCM					
i Class number ω_i Spectral data matrix of each pixel belonging to class i $p(\omega_i)$ Probability of class having ω_i $ \Sigma_i $ Determinant of the covariance matrix in class ω_i m_i Mean vector of the spectral data for all pixels belonging to class i. $ \Sigma_i $ Number of rows in the image $ \Sigma_i $ Number of columns in the image $ \Sigma_i $ Lightness $ \Sigma_i $ Redness $ \Sigma_i $ Vellowness $ \Sigma_i $ Reflectance image at the centre wavelength $ \Sigma_i $ Reflectance image at the wavelength $ \Sigma_i $ With a gap $ E $ with a gap $ E $				Standard deviation of columns in GLCM	
Class number ω_i Spectral data matrix of each pixel belonging to class i $p(\omega_i)$ Probability of class having ω_i $ \Sigma_i $ Determinant of the covariance matrix in class ω_i m_i Mean vector of the spectral data for all pixels belonging to class i. Number of columns in the image ΔE Total colour change L^* Lightness a^* Redness b^* Yellowness $S(\lambda_n)$ Reflectance image at the centre wavelength λ_n $S''(\lambda_n, g)$ The second difference image at the wavelength λ_n with a gan (a)			•	Number of rows in the image	
ω_i Spectral data matrix of each pixel belonging to class i Σ_i Total colour change Σ_i Lightness Σ_i^{-1} Determinant of the covariance matrix in class ω_i Σ_i^{-1} Inverse of the covariance matrix of class ω_i Σ_i^{-1} Mean vector of the spectral data for all pixels belonging to class i. Σ_i^{-1} The second difference image at the wavelength λ_i with a gap (a)				S .	
$p(\omega_i) \text{Probability of class having } \omega_i \\ \Sigma_i \text{Determinant of the covariance matrix in class } \omega_i \\ \Sigma_i^{-1} \text{Inverse of the covariance matrix of class } \omega_i \\ m_i \text{Mean vector of the spectral data for all pixels} \\ \text{belonging to class i.} \text{L*} \text{Lightness} \\ a^* \text{Redness} \\ b^* \text{Yellowness} \\ S(\lambda_n) \text{Reflectance image at the centre wavelength } \lambda_n \\ S''(\lambda_n, g) \text{The second difference image at the wavelength } \lambda_n \\ \text{with a gan } (g)$	$\omega_{ m i}$		_		
$p(\omega_i)$ Probability of class having ω_i $ \Sigma_i $ Determinant of the covariance matrix in class ω_i Σ_i^{-1} Inverse of the covariance matrix of class ω_i m_i Mean vector of the spectral data for all pixels belonging to class i. s^* Redness s^* Yellowness s^* S(λ_n) Reflectance image at the centre wavelength λ_n $s''(\lambda_n, g)$ The second difference image at the wavelength λ_n with a gap $p(a)$			L*	=	
Σ_i Determinant of the covariance matrix in class ω_i Σ_i^{-1} Inverse of the covariance matrix of class ω_i $S(\lambda_n)$ Reflectance image at the centre wavelength λ_n $S''(\lambda_n, g)$ The second difference image at the wavelength λ_n with a gap (g)					
Inverse of the covariance matrix of class ω_i m_i Mean vector of the spectral data for all pixels belonging to class i. $S(\lambda_n)$ Reflectance image at the centre wavelength λ_n $S''(\lambda_n, g)$ The second difference image at the wavelength λ_n with a gap (a)					
belonging to class i. $S''(\lambda_n, g)$ The second difference image at the wavelength λ_n with a gap (g)				Reflectance image at the centre wavelength λ_n	
belonging to class i. with a gan (a)	m_i			<u> </u>	
R(x) Calibrated image			(11, 3)		
	R(x)	Calibrated image		5 1 0,	

1. Introduction

Interests in food quality are driven from the essential need to supply consumers with consistent products at an affordable

price. The ideal way to enhance food supplies and consider food safety issues is to regularly monitor food products during all stages of handling chain to detect the onset of potential issues and to take timely action once a problem has been identified. Effective monitoring systems and an intelligent

Download English Version:

https://daneshyari.com/en/article/1710895

Download Persian Version:

https://daneshyari.com/article/1710895

<u>Daneshyari.com</u>