

Full paper/Mémoire

Contents lists available at ScienceDirect

Comptes Rendus Chimie

www.sciencedirect.com

In situ DRIFTS studies of high-temperature water-gas shift reaction on chromium-free iron oxide catalysts

Amel Boudjemaa^a, Cécile Daniel^b, Claude Mirodatos^b, Mohamed Trari^a, Aline Auroux^b, Rabah Bouarab^{a,*}

^a Laboratoires C. G. N. et L. S. V. E. R., faculté de chimie, USTHB, BP32, 16111, El-Alia, Bab-Ezzouar, Algers, Algeria ^b UMR 5256, CNRS-UCB Lyon-1, institut de recherches sur la catalyse et l'environnement de Lyon, 2, avenue Albert-Einstein, 69626 Villeurbanne cedex, France

ARTICLE INFO

Article history: Received 1 May 2010 Accepted after revision 16 November 2010 Available online 11 January 2011

Keywords: DRIFTS study WGSR Fe₂O₃ MgO SiO₂ TiO₂

Mots clés : Étude DRIFTS WGSR Fe₂O₃ MgO SiO₂ TiO₂

ABSTRACT

The identification of reaction surface intermediates in the high-temperature water-gas shift reaction on iron oxide unpromoted and promoted MgO, SiO₂ and TiO₂ has been studied via diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The dosing of the gas mixture CO + H₂O onto reduced Fe₂O₃/MgO as a function of reaction temperature produced formate species (1720, 1630 and 1370 cm⁻¹) as a surface intermediate. On reduced Fe₂O₃/TiO₂ only bands characteristic of carbonate species (1630 and 1550 cm⁻¹) are observed. A direct correlation between catalytic activity and acid/base properties of our catalysts is established. The Fe₂O₃/MgO basic catalyst is 100 times more active than the acidic catalyst Fe₂O₃/SiO₂.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

L'identification des intermédiaires de surface en réaction de conversion du gaz à l'eau, dans le domaine des hautes températures, sur l'oxyde de fer seul et supporté par MgO, SiO₂ et TiO₂ a été étudiée par spectroscopie infrarouge en réflexion diffuse (DRIFTS). Le dosage de Fe₂O₃/MgO par le mélange gazeux CO + H₂O en fonction de la température de réaction alimente la surface en espèces formiates (1720, 1630 et 1370 cm⁻¹). Sur le système Fe₂O₃/TiO₂, seules les bandes caractéristiques des espèces carbonates (1630 et 1550 cm⁻¹) sont observées. Une corrélation directe entre l'activité catalytique et les propriétés acidobasiques est établie. Le catalyseur basique Fe₂O₃/MgO est 100 fois plus actif que le catalyseur acide Fe₂O₃/SiO₂.

© 2010 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.

1. Introduction

The water-gas shift reaction $(CO + H_2O \rightarrow CO_2 + H_2)$ is generally operated according to a two-step process, namely at high (HTS, 350-450 °C) and low (LTS, 250– 300 °C) temperatures, over two main types of catalysts, Fe-Cr and Cu-Zn systems, respectively. Iron oxide based HTS catalysts, Fe_3O_4 [1,2] or Fe_2O_3 [3], are generally doped with Cr_2O_3 [4–7]. The recognized role of chromium is preventing iron oxide from sintering as well as catalyzing the WGS reaction. However, catalysts based on Fe-Cr-O have ecological and safety problems linked to chromium compounds. For this reason, development of chromiumfree iron-based catalysts with high HTS performance is suitable [3,8,9].

The WGS reaction is thought to occur principally through two main types of mechanisms, the regenerative or redox mechanism [1,10] and the associative mechanism

* Corresponding author.

E-mail address: rabah.bouarab@enp.edu.dz (R. Bouarab).

^{1631-0748/\$ -} see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crci.2010.11.007

[1]. In the regenerative mechanism the catalyst surface is successively oxidized by H_2O and reduced by CO. In turn, the associative mechanism assumes that CO and H_2O interact to form a reaction intermediate, such as an adsorbed formate species, which then decomposes to CO_2 and H_2 . It was found by Rethwisch and Dumesic [1] that Fe₃O₄ catalyzed the water-gas shift reaction via the regenerative mechanism while MgFe₂O₄, ZnO, MgO, TiO₂, SiO₂ catalyzed the water-gas shift reaction mainly via the associative mechanism. It was also established that basic oxides were more active than acidic or amphoprotic ones. This can be related to the weaker metal-oxygen bonding in basic oxides.

The associative mechanism generally considers a kind of bifunctional sequence with a specific role of metal and support. Thus, the formate can form from the surface reaction of CO bonded to the metal with OH groups located at the metal-support interface, as follows: $CO_{ad} + OH_{ad} \rightarrow HCOO_{ad}$. The formate bonded on the metal then spills over to the support where it decomposes to CO_2 and H_2 [11].

In the present paper, we give the effect of the acid/base properties of various supports on chromium-free ironbased catalyst in the WGS Reaction. Besides the determination of catalytic activity and acid/base properties, catalysts were subjected to in situ DRIFT measurements in order to obtain the type of active sites and the part of these interfaces in the water gas shift reaction.

2. Experimental

2.1. Catalysts preparation

Fe₂O₃/SiO₂, Fe₂O₃/TiO₂ and Fe₂O₃/MgO systems were prepared by the incipient wetness impregnation method. The 30 wt.% Fe₂O₃/support catalysts were prepared by impregnation of SiO₂, TiO₂ or MgO with an appropriate concentration of Fe(NO₃)₃.9 H₂O. After drying at 80 °C overnight, the resulting solid was calcined in air at 400 °C for 2.5 h [12].

Bulk Fe₂O₃ catalyst was synthesized by the coprecipitation method. The starting reagents of high purity FeSO₄.7 H₂O and Fe₂(SO₄)₃.5 H₂O with a molar ratio (1/1) were dissolved in water to which 100 mL of NH₄OH was added as a precipitant agent. The mixture was vigorously stirred for 30 min. The resulting powder was washed several times with deionized water, and dried at 110 °C. Subsequently, the powder was calcined at 400 °C in air (33 mL/min) with a rate of 5 °C/mn for 2.5 h [9].

2.2. Apparatus and procedure

X-ray powder diffraction patterns were obtained with a Philips PW 1050/81 automated powder goniometer, equipped with diffracted-beam graphite monochromatic Cu (K_{α}) radiation.

 H_2- TPR profiles were determined using a laboratorymade apparatus equipped with a TCD detector. The catalyst sample (200 mg) was loaded into a U-shape quartz reactor, then heated at 200 °C under argon flow with a rate of 5 °C/min for 1 h and cooled to room temperature. Next, the sample was submitted to a flow of 5% H₂/Ar from room temperature to 800 °C. A cold trap was placed downstream of the sample to capture any water that evolved from catalyst prior to entering the TCD detector.

Catalysts were tested under atmospheric pressure between 350 and 450 °C after being activated in situ under a flow of 48% H_2/N_2 using an amount of catalyst of 250 mg for all runs. After reduction, the reacting gases ($H_2O/CO = 4.4$) were introduced into the reactor at a total flow rate of 33 mL/min. Before each analysis, the effluent passed through a water-trap at 0 °C to remove the water of the reaction. The gas composition was analyzed by a TCD chromatograph containing two 4 m carbosieve B columns (1/8 inch, 100 to 200 meshes).

In situ DRIFT studies were performed on a Nicolet Magna IRTF spectrometer with OMNIC software. The reaction was performed in a high temperature Spectratech cell equipped with a ZnSe window. The sample $(\sim 50 \text{ mg})$ was first treated in a flow of $(\sim 35 \text{ mL/min})$ H₂ at 400 °C for 30 min (high-temperature treatment) before each experiment. The heating rate during the treatment was 10 °C/min. After this treatment, the sample was cooled under He and then put in contact with the reacting mixture CO/H₂O at increasing temperature (25–450 °C). Unless stated otherwise, infrared (IR) spectra were recorded against a background of the sample at the reaction temperature under flowing He. IR spectra were recorded with co-addition of 64 scans in single-beam spectra or absorbance spectra, by applying a resolution of $4 \, \text{cm}^{-1}$.

3. Results and discussion

3.1. XRD and H_2 - TPR measurements

The X-ray phases of Fe₂O₃-only and Fe₂O₃-promoted freshly calcined samples are given in Table 1. α -Fe₂O₃ hematite is the mainly crystalline phase in Fe₂O₃, Fe₂O₃/SiO₂ and Fe₂O₃/TiO₂. For the system doped with MgO, at higher Fe₂O₃ loading (30 wt.%) the band characteristic of MgO decreased while new bands assigned to MgFe₂O₄ are formed [9]. This indicates that iron oxide is in strong interaction with MgO, leading to a mixed oxide formation.

H₂- TPR results of the four catalysts are reported in Fig. 1 and their peak maxima are summarized in Table 1. In all cases, three peaks of hydrogen consumption in a temperature range of 25-800 °C are observed [13,14]. For Fe₂O₃-only, the lower reduction temperature region (446 °C) of Fe₂O₃ is attributed to the reduction of Fe₂O₃ to Fe₃O₄ while the higher temperature region ($606-684 \degree C$) is credited to the reduction of Fe₃O₄ to FeO and Fe. The low temperature peaks of Fe₂O₃/TiO₂ and Fe₂O₃/MgO shifted to 340 and 368 °C respectively. On the other hand, MgOpromoted catalyst involved a shift of the reduction temperature to lower values as depicted in Fig. 1, curve c. XRD studies showed that MgFe₂O₄ crystalline phase is present in Fe₂O₃/MgO. Indeed, the presence of this phase improves the reducibility of Fe₂O₃/MgO. More detailed studies were reported elsewhere [9].

Download English Version:

https://daneshyari.com/en/article/171103

Download Persian Version:

https://daneshyari.com/article/171103

Daneshyari.com