

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/issn/15375110

Special Issue: Irrigated Agriculture

Research Paper

Satellite-based evapotranspiration of a super-intensive olive orchard: Application of METRIC algorithms

Engineeting

Isabel Pôças ^{a,b,*}, Teresa A. Paço ^a, Mário Cunha ^{b,c}, José A. Andrade ^d, José Silvestre ^{a,e}, Adélia Sousa ^d, Francisco L. Santos ^d, Luís S. Pereira ^a, Richard G. Allen ^f

^a CEER Biosystems Engineering, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda,

1349-017 Lisboa, Portugal

^b Centro de Investigação em Ciências Geo-Espaciais (CICGE), Porto, Portugal

^c Faculdade de Ciências da Universidade do Porto, Porto, Portugal

^d ICAAM, Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Évora, Portugal

^e Instituto Nacional de Investigação Agrária e Veterinária, Dois Portos, Portugal

 $^{
m f}$ University of Idaho, Research and Extension Center, Kimberly, Idaho, USA

ARTICLE INFO

Article history: Published online 16 July 2014

Keywords: Landsat images Leaf area index Momentum roughness length Remote sensing Surface energy balance Surface temperature METRICTM is a satellite-based surface energy balance model aimed at estimating and mapping crop evapotranspiration (ET). It has been applied to a large range of vegetation types, mostly annual crops. When applied to anisotropic woody canopies, such as olive orchards, extensions are required to algorithms for estimating the leaf area index (LAI), surface temperature, and momentum roughness length (Z_{om}). The computation of the radiometric surface temperature needs to consider a three-source condition, thus differentiating the temperature of the canopy (T_c) , of the shaded ground surface (T_{shadow}) , and of the sunlit ground surface (T_{sunlit}). The estimation of the Z_{om} for tall and incomplete cover is based upon the LAI and crop height using the Perrier equation. The LAI, Zom, and temperature derived from METRIC after these adjustments were tested against field collected data with good results. The application of METRIC to a two year set of Landsat images to estimate ET of a super-intensive olive orchard in Southern Portugal produced good ET estimates that compared well with ground-based ET. The analysis of METRIC performance showed a quantitative improvement of ET estimates when applying the three-source condition for temperature estimation, as well as the Z_{om} computation with the Perrier equation. Results show that METRIC can be used operationally to estimate and mapping ET of super-intensive olive orchards aiming at improving irrigation water use and management.

© 2014 IAgrE. Published by Elsevier Ltd. All rights reserved.

E-mail addresses: ipocas@mail.icav.up.pt, isabel.pocas@fc.up.pt (I. Pôças). http://dx.doi.org/10.1016/j.biosystemseng.2014.06.019

^{*} Corresponding author. CEER Biosystems Engineering, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisboa, Portugal. Tel.: +351220402160.

^{1537-5110/© 2014} IAgrE. Published by Elsevier Ltd. All rights reserved.

Nomencl	atur
---------	------

а	adjustment factor for the distribution of leaf area
	index within the canopy []
ALEXI	Atmosphere–Land Exchange Inverse
CIMEC	Calibration using Inverse Modelling at Extreme
	Conditions
D	ratio of vegetation height vs. width []
DOY	Day of the year []
d	zero plane displacement height [m]
dT	near surface air temperature difference [K]
Es	soil evaporation $[mm d^{-1}]$
$E_{s sim}$	Soil evaporation modelled by SIMDualKc $[mm d^{-1}]$
ET	actual evapotranspiration [mm d^{-1}]
ET_{ec}	evapotranspiration obtained by Eddy Covariance
	technique [mm d ⁻¹]
ET_{inst}	instantaneous evapotranspiration [mm h^{-1}]
ETMETRIC	evapotranspiration estimated by METRIC d^{-1}
FT	evanotranspiration derived from field
LIODS	observations [mm d^{-1}]
ET.	Alfalfa reference evapotranspiration $[mm d^{-1}]$
ETrF	fraction of reference evapotranspiration []
ETrFingt	instantaneous fraction of reference
IIISt	evapotranspiration []
ETM+	Enhanced Thematic Mapper Plus
FLAT	proportion of leaf area index lying above $h/2$ []
fbl	Factor describing the proportion of bottom leafless
J 01	portion of the tree and not casting a shadow due to
	the total height of the tree []
fc	fraction of ground covered by vegetation, when
	viewed from nadir []
f _{nonvisible}	Fraction of the canopy that has a shadow under it
• • • • •	which is not visible from the satellite []
$f_{\rm shadow}$	Fraction of ground covered by shadow, when
	viewed from nadir []
$f_{\rm shape}$	factor to adjust for differences in shape between
	trees and their shadow when viewed from nadir []
$f_{\rm stot}$	fractional area covered by a shadow cast by the
	crowns []
f_{sunlit}	fraction of ground covered by sunlit, when viewed
	from nadir []

f _w	fraction of ground wetted []
G	soil heat flux [W m ⁻²]
Н	sensible heat flux [W m $^{-2}$]
h	crop height [m]
IR	infrared
Κ	Extinction coefficient []
Kc	Crop coefficient []
K _{cb}	Basal crop coefficient []
Ke	Soil evaporation coefficient []
K _{cr}	Alfalfa crop coefficient []
LAI	Leaf Area Index [m ² m ⁻²]
METRICT	Mapping EvapoTranspiration at high Resolution
	using Internalised Calibration
NDVI	Normalised Difference Vegetation Index []
PAR	Photosynthetically Active Radiation
Qi	daily PAR measured at the top of the canopy
	$[\mu mol m^{-2}]$
Q ₀	daily PAR measured below the canopy $[\mu mol m^{-2}]$
r _{ah1,2}	aerodynamic resistance to heat transport between
	two heights [s m ⁻¹]
R _n	net radiation [W m ⁻²]
SAVI	Soil Adjusted Vegetation Index []
SEBAL	Surface Energy Balance Algorithm for Land
T _c	temperature of the canopy [K]
$T_{c,METRIC}$	average temperature estimated with METRIC [K]
T _{c,ground}	_{lata} ground-based temperature [K]
$T_{coldpixel}$ temperature of the cold pixel [K]	
T _{hotpixel}	temperature of the hot pixel [K]
ТМ	Thematic Mapper
Ts	surface temperature [K]
TSEB	Two-Source Energy Balance
$T_{\rm sf}$	Plant transpiration [mm d ⁻¹]
$T_{ m shadow}$	temperature of the shaded ground surface [K]
T _{sunlit}	temperature of the sunlit ground surface [K]
Twetbulb	temperature of the wet bulb [K]
VI	Vegetation index []
w	vegetation width [m]
Zom	momentum roughness length [m]
λ	latent heat of vaporisation [J kg ⁻¹]
λΕ	latent heat flux [W m ⁻²]
θ	sun zenith angle [rad]

1. Introduction

The intensification of irrigated agriculture leads to the need to improve irrigation management and adopt sustainable irrigation practices. These issues are particularly relevant in the Mediterranean regions, where water scarcity problems are rising. In recent years, many olive orchards, which are a major crop in the Mediterranean agricultural systems, have been converted into intensive or super-intensive hedgerow systems, with very high plant density and irrigation (Orgaz, Testi, Villalobos, & Fereres, 2006; Testi, Villalobos, & Orgaz, 2004; Testi, Villalobos, Orgaz, & Fereres, 2006). Therefore, the accurate estimation of crop water requirements, i.e., crop evapotranspiration (ET), and its spatio-temporal variability at field level is an increasingly important issue for optimising water management.

In recent decades, remote sensing-based techniques have been used for irrigation water management (e.g., Calera, Jochum, García, Rodríguez, & Fuster, 2005; D'Urso et al., 2010). The synoptic and repetitive coverage of Earth Observation data with high spatial resolution makes this type of data interesting for monitoring and quantifying the spatial and temporal variation of ET. The most widely used remote Download English Version:

https://daneshyari.com/en/article/1711092

Download Persian Version:

https://daneshyari.com/article/1711092

Daneshyari.com