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Abstract: A robust model predictive control algorithm for discrete linear systems with both state and input

delays subjected to constrained input control is presented, where the polytopic uncertainties exist in both state

matrices and input matrices. The algorithm optimizes an upper bound with respect to a state feedback control law.

The feedback control law is presented based on the construction of a parameter-dependent Lyapunov function. The

above optimization problem can be formulated as a LMI-based optimization. The feasibility of the optimization

problem guarantees that the algorithm is robustly stable. The simulation results verify the effectiveness of the

proposed algorithm.
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1. Introduction

Model predictive control (MPC) is a widely accepted

control algorithm in process industry because of its

ability to cope with multivariable plants with state

and control constraints. The main drawback of MPC

is the difficulty to incorporate uncertainty explicitly.

Kothare[1] has made progress in this direction and

presented a robust MPC algorithm for two kinds of

uncertain systems. This algorithm was improved by

Ding[2].

In process industry, there always exist uncertain

systems with time delay subjected to input control

constraints. Robust stability technique of uncertain

time-delay systems have been widely studied [3−5],

whereas robust MPC technique was less researched.

Liu[6] and Hu[7], respectively, proposed robust MPC

algorithms for the uncertain systems with just state

delays and with uncertain state delays. Li[8] and

Chen[9] studied the guaranteed cost control for un-

certain systems with both state and input delays.

The objective of this article is to extend the con-

trolled systems from polytopic uncertain systems with

just state delays to polytopic uncertain systems with

both state and input delays. The other is that a sin-

gle constant Lyapunov function is displaced by several

Lyapunov functions each one corresponding to the dif-

ferent vertex of the uncertain polytope. In the algo-

rithm, the optimization problem can be formulated as

a LMI-based optimization. The simulation results can

verify the effectiveness of the presented algorithm.

Notation: The notation used is fairly standard. Rn

is the n-dimensional space of real-valued vectors. For

a vector x and a positive definite matrix H , ‖x‖
2
H =

xTHx. The symbol∗ induces a symmetric structure,

that is to say, when H and R are symmetric matrices,

then





H TT

∗ R



 =





H TT

T R



.

2. Problem formulation

Consider a polytopic uncertain system with both state

and input delays:






xk+1 = Akxk + Adkxk−d + Buk + Bhkuk−h

xk = φk, k ∈ [−d∗, 0], d∗ = max {d, h}
(1)

with input constraints:

|uk+i| 6 umax, i > 0 (2)
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where x ∈ <nx is the state, u ∈ <nu is the control

input, d and h are constant integers representing the

number of delay units in the state and input, respec-

tively. φ(k) is an initial function. And we assume that

[Ak Adk Bhk] ∈ Ω , k > 0. For polytopic systems, the

set Ω is the polytope as follows

Ω = Co{[A1k A(d1)k B(h1)k],

· · · , [ALk A(dL)k
B(hL)k]}

(3)

where Co denotes the convex hull, [Alk A(dl)k B(hl)k]

are vertices of the convex hull and L is the amount of

models. Any [Ak Adk Bhk] within the convex set Ω is

a linear combination of the vertices

Ak =
L
∑

l=1

θklAlk,

Adk =
L
∑

l=1

θklA(dl)k,

Bhk =
L
∑

l=1

θklB(hl)k,

with
L
∑

l=1

θkl = 1,

0 6 θkl 6 1. This type of systems with both state

and input delays has not been paid much attention

although the polytopic uncertain systems have been

studied for many years.

The problem is to find the optimal control inputs

which satisfy the constraints and to achieve robust

performance objective as follows:

min
uk+i|k ,i>0

Jk∞ (4)

with

J∞(k) = max
[Ak+i,Ad(k+i),Bh(k+i)]∈Ω,i>0

∞
∑

i=0

[

∥

∥xk+i|k

∥

∥

2

Q
+

∥

∥uk+i|k

∥

∥

2

R

]
(5)

where xk+i|k denotes the state at time k+ i, predicted

at time k and uk+i|k denotes control input at time k+i,

computed at time k. The matrices Q and R denote

positive definite and semi-definite weighting matrices,

respectively.

In order to reduce the infinite optimization problem

(4) into a finite one, a state feedback control law is

introduced:

uk+i = Fk+ixk+i, i > 0 (6)

where Fk+i =
L
∑

l=1

θl(k + i)Fl, and the following inequa-

tion is introduced for any [Ak+iAd(k+i)Bh(k+i)] ∈ Ω

Vk+i+1|k − Vk+i|k

6 −[‖xk+i|k‖
2
Q + ‖uk+i|k‖

2
R]

(7)

where V is a Lyapunov function

Vk|k = ||xk|k ||
2
P (k)+

d
∑

i=1

||xk−i|k ||
2
S+

∑h
j=1 ||Fkxk−j|k ||

2
T

(8)

where Pk =
L
∑

l=1

θlkPl,Pk > 0,S > 0 and T > 0.

When (7) is summed from i = 0 to ∞, Jk∞ 6 Vk|k .

Then minimization problem (4) can be transformed

into minimization of Vk|k. Suppose that there exists

γ ∈ < satisfying:

min Jk∞ 6 min Vk|k 6 min γ (9)

That is to say, there must exist the following inequa-
lity:

Vk|k =
∥

∥xk|k

∥

∥

2

Pk

+
d

∑

i=1

∥

∥xk−i|k

∥

∥

2

S
+

h
∑

j=1

∥

∥Fkxk−j|k

∥

∥

2

T
6 γ

(10)

3. Main results

When input constraints are not considered, at sam-

pling time k, the optimization problem can be written

as follows:

where j ∈ {1, 2, · · · , L}, l ∈ {1, 2, · · · , L}.

Proof In (12), Gl is a matrix of full rank, Xl > 0,

then

Substitute Yl = FlGl for (15), pre-multiply both

sides of (15) with diag[X−1
j G−T

l I I I I I I ]

and post-multiply both sides of (15) with

diag[x−1
j G−1

l I I I I I I ] let

min
F (k),S,T,γ

γ s.t. (7)(9) (11)

Define W = γS−1, M = γT−1, Xl = γP−1
l and

Fl = YlG
−1
l , l ∈ {1, 2, · · · , L}, where Yl and Gl are

matrices with appropriate dimensions, Xj = γP−1
j ,

j ∈ {1, 2, · · · , L}. Use Schur complements, inequality

(7) can be transformed into the following LMI:
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