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Abstract: A new multi-modal optimization algorithm called the self-organizing worm algorithm (SOWA) is

presented for optimization of multi-modal functions. The main idea of this algorithm can be described as follows:

disperse some worms equably in the domain; the worms exchange the information each other and creep toward the

nearest high point; at last they will stop on the nearest high point. All peaks of multi-modal function can be found

rapidly through studying and chasing among the worms. In contrast with the classical multi-modal optimization

algorithms, SOWA is provided with a simple calculation, strong convergence, high precision, and does not need any

prior knowledge. Several simulation experiments for SOWA are performed, and the complexity of SOWA is analyzed

amply. The results show that SOWA is very effective in optimization of multi-modal functions.
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1. Introduction

Because of the limitation of impersonality, the global

optimal solution can not be reached in many optimiza-

tion problems. Therefore, not only the global optimal

solution but also some local optimal solutions have to

be searched in the domain. These local solutions can

supply a variety of selections for the decision maker.

This problem is named multi-modal function opti-

mization. Therefore, searching both the global and

the local solutions has been a hotspot in multi-modal

optimization.

Multi-modal genetic algorithms (MGA) is a special

genetic algorithm (GA) for searching the multi-peak

of the multi-modal functions. In 1975, De Jong[1] in-

troduced crowding factor into MGA. In 1985, Perry[2]

applied the habitat theory on GA. In 1975, Holland[3]

introduced the Niche theory initially; Goldberg

and Richardson[4] realized the Niche theory in 1987

by a combined method of sharing and restricted

mating. In 1994, William M.Spears[5] put forward

the simple subpopulation schema based on sharing
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schema to reduce the computation complexity ef-

ficiently. In 2001, Dr Liu[6] brought forward two

kinds of new MGA (balanced space method and local

sharing method) by which the optimization of uneven

peak function can be solved efficiently. Dr Yang also

discusses the optimization of multi-modal function

through improving on the Immune algorithm [7].

Currently, most of the multi-modal algorithms such

as GA and Immune Algorithm not only have the short-

coming of missing peak value, needing much of popula-

tion but also need some rigorous prior knowledge such

as the number of peaks and the peak distance more or

less. These factors embarrass the application of opti-

mization algorithm. In this article a new multi-modal

optimization algorithm (SOMA) is brought forward

for actual application of multi-modal problem from

a new point of view. Through studying and chasing

among the worms this algorithm can find all peaks of

multi-modal function. This algorithm has the char-

acter of a simple calculation, strong convergence and

high precision. Especially there is no need for any

prior knowledge in optimization.
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2. The self-organizing worm algorithm

The main idea of SOWA can be described as follows:

disperse some worm equably in the domain; define the

simple rule for each worm that climbs toward the high

point; if a worm has already been at the high point

(locations of all his neighbor worms are below it) it

will stop creeping and its neighbor worms will creep

toward it. Through the ceaseless creeping of worms in

the domain, all worms will concentrate on the peaks

of the multi-modal function.

In SOWA, each worm is named as a unit and the

neighbor worms as neighbor units.

2.1 Description of SOWA

First, let the dimensionality of functions to be op-

timized be l. Select m units ki(i = 1, 2, · · · , m) (a

unit is a possible solution of the problem; the selec-

tion method can be assured according to the dimen-

sionality and the characteristic of the function) in do-

main to build up the initial group. Select p neighbors

(the number of neighbors can be assured by the di-

mensionality of functions, it can be defined as p=2l).

The neighbors of unit ki can be marked as neighbor

ij(j=1, 2, · · · , p). Next compute the location parame-

ter xei(e=1, 2, · · · , l)and the fitness value Fitness (ki)

which can be defined by the object function.

Second, define the motion rules of units ki(i=1,2,

· · · , m): compare the Fitness (ki) of ki with its neigh-

bors neighbor ij(j=1, 2, · · · , p). If Fitness (ki) is more

than all its neighbors neighborij(j=1, · · · , p) the unit

ki stops moving and sets the motion parameter. For-

ward (ki)=0; or else sets Forward (ki)=1 and moves

toward the nearest neighbor whose fitness is more than

units ki . The new location of unit ki will be the

golden section between ki and this neighbor. Com-

pute the new Fitness (ki) of ki, return to the former

location if the new value is less than the former value.

A cycle is completed when all units in the domain have

performed once according to the rules.

All units in-group change their locations continu-

ously until stop conditions have been matched.

2.2 The flow diagram of SOWA

procedure worm

begin

Initialize();

For(i=1;i<n;i++)

Move() ;

Output();

End

2.1.1 Initialization (initialize ())

Select m units ki(i=1,2,m) in domain (xe0, xen) to

build up the initial group. The location parameter can

be calculated as follows: divide the domain of every

dimensionality intosparts, the units will be placed at

all crossings of these divisions. The number of units

can be calculated as shown in Eq.(1). The location

parameters xei(e=1,2,· · · , l) and the Fitness (ki) of

unit ki can be assured as Eq.(2) and Eq.(3).

m = (s + 1)l (1)

xei = xe0 + (
xen − xe0

s
)(qei − 1)

i = 1, 2, · · · , m, e = 1, 2, · · · , l, qei = 1, 2, · · · , s
(2)

Fitness(ki) = f(x1i, x2i . . . xli)

i = 1, 2, · · · , m
(3)

For unit ki,xei(e=1,2,· · · ,l) denotes the coordinate

of a certain dimensionality, qei denotes the location of

a certain dimensionality coordinate in the domain of

this dimensionality.

2.1.2 Motion rules (Move ())

If Fitness (ki) is more than all its neighbors

(neighborij(j=1,· · · , p)), the moving of unit ki is

stopped and set the motion parameter Forward

(ki)=0; or else set Forward (ki)=1 and moves toward

the nearest neighbor whose fitness is more than units

ki. Set the location parameters of this neighbor as

minx ei(e=1,2,· · · , l) whose step length can be calcu-

lated as Eq.(4). Compute the new Fitness (xi) of ki

and return to the former location if the new value is

less than the former value.

Pacei =

√
l∑

e=1
(xei − min xei)

2
∗ 0.618

e = 1, 2, · · · , l

2.1.3 Output rules (Output () )

After nth cycle units ki(Forward (ki)=0) are on peak

points. The locations and the fitness values of ki will
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