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Abstract: The novel closed–form expressions for the average channel capacity of dual selection diversity is pre-

sented, as well as, the bit-error rate (BER) of several coherent and noncoherent digital modulation schemes in the

correlated Weibull fading channels with nonidentical statistics. The results are expressed in terms of Meijer’s G-

function, which can be easily evaluated numerically. The simulation results are presented to validate the proposed

theoretical analysis and to examine the effects of the fading severity on the concerned quantities.
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1. Introduction

With the ever increasing demand for personal com-
munication services (PCS) to anyplace, at anytime,
wireless systems are required to operate in increas-
ingly hostile environments, with less power consump-
tion, and more interferences. Multipath fading and
shadowing are two common destructive effects in the
hostile environment, which severely degrade the per-
formance of wireless communication systems. Many
statistical distributions are available in the litera-
ture to model multipath and shadow fading in such
systems[1]. The performance analysis of digital com-
munication diversity receivers with selection com-
bining (SC), has been extensively studied for sev-
eral well-known fading channel models[2]. Very re-
cently, the topic of communications over Weibull fad-
ing channels has begun to receive renewed inter-
est, because of the fact that it is a flexible model
providing a very good fit for experimental fading
channel measurements for both indoor[3] and out-
door environments[4]. The performance of the dual-
branch SC receiver over the Weibull fading chan-
nel with identical statistics has been studied, for ex-
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ample, the average channel capacity[5−10] and the
average symbol error probability for several coher-
ent, noncoherent, binary and multilevel modulations
schemes[11−12]. However, to the best of the authors’
knowledge, the average channel capacity and average
bit error rate (ABER) of SC receivers with coherent
frequency-shift keying (FSK) or noncoherent M-ary
frequency shift keying (NMFSK) digital modulation
schemes in a Weibull fading channel, have not been
investigated with nonidentical statistics yet.

In this article, the average capacity and average
BER of dual selection diversity operating with CFSK
or NMFSK digital modulation schemes, over noniden-
tical Statistics Weibull fading channels are presented.
The theoretical analysis is outlined and the effects of
various system parameters are given. The proposed
theoretical analysis is then validated by means of com-
puter simulation.

2. Average channel capacity

The transmission of a signal with bandwidth BW over
a fading indoor channel is considered here. The capac-
ity can be considered as a random variable. Suppose
that the probability density function (PDF) of the out-
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put signal-to-noise ratio (SNR, denoted as γ) can be
expressed as Pγ(γ). Then the average channel capac-
ity over the PDF, in Shannon’s sense[13], is given by

C̄ ∼= BW

∫ ∞

0

log2(1 + γ)Pγ(γ)dγ (1)

For a dual selection diversity system in correlated
Weibull fading channels with nonidentical statistics,
Pr(γ) can be expressed as
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Where β is the fading parameter (β � 0), γ̄1 and
γ̄2 are the corresponding average SNRs per sym-
bol for each diversity branch, respectively. In (2),
a = 1/Γ (d2), where Γ is the Gamma function. As
β increases, the severity of the fading decreases. It
is convenient to define the function dτ = 1 + τ/β.
In general, τ is a nonnegative real variable. Setting
D = a−( β

2 )−1[γ̄−( β
2δ )

1 +γ̄
−( β

2δ )
1 ]δ, the corresponding cor-

relation coefficient ρ is given by

ρ =
Γ 2(dδ)Γ (d2) − Γ 2(d1)Γ (d2δ)

Γ (d2δ)[Γ (d2) − Γ 2(d1)]
(3)

where the dependence factor δ(0 < δ � 1) is directly
related to the correlation coefficient ρ. Using the Mei-
jer’s G-function[14−15], the integral in (1) can be eval-
uated in a closed-form, given by
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where I(n, ξ) ∼= ξ/n, (ξ + 1)/n, · · · , (ξ + n − 1)/n,
with ξ as an arbitrary real value and n as a positive

integer. Moreover, l/k = β/2 where k and l are posi-
tive integers, depending on the value of β. A set of k

and l for minimum values of β can be properly chosen.

3. Average bit-error rate

3.1 CFSK digital modulation schemes

The conditional BER in an AWGN channel can be
written in explicit form as[11]

Pe =
Γ (b, aγ)
2Γ (b)

(5)

where a = b = 1/2 for CFSK, Γ (:, :) is the comple-
mentary incomplete gamma function in a flat-fading
environment. Thus, the average bit-error probability
is given by

P̄e =
∫ ∞

0

Pe(γ)Pγ(γ)dγ (6)

Substituting (2) and (3) in (6), the integral in (6) can
be written as
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The integral in (7) can be evaluated in a closed-form
as follows. Using Meijer’s G-function, (7) becomes
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3.2 Non-coherent MFSK digital modulation

schemes

Similarly, for noncoherent MFSK, the conditional
BER in an AWGN channel is given by[16]

Pe ≈ M − 1
2

e−
γ
2 (9)
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