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Abstract:Altemating direction implicit finite difference time domain (ADI-FDTD) method is unconditionally stable and 
the maximum time step is not limited by the Courant stability condition, but rather by numerical emr. Compared with 
the conventional FDTD method, the time step of ADI-FDTD can be enlarged arbitrarily and the CPU cast can be re- 
duced. 2D perfectly matched layer (PML) absorbing boundary condition is prowed to truncate computation space for 
ADI-FDTD in dispersive media using recursive convolution(RC) method and the 2D PML formulations for dispersive me- 
dia are derived. ADI-FM'D formulations for d i s p i v e  media can be obtained from the simplified PML formulations. 
The scattering of target in dispexsive mi! is simulated under sine wave and Gaussian pulse excitations and numerical results 
of ADI-FDTD with PML are compared with FDTD. Good agreement is observed. At the same time the CPU cost for 
ADI-FDTD is obviously reduced. 
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1. INTRODUCTION 

The finite difference time domain(FDTD) method is 
widely used for solving electromagnetic problems['] . 
The Courant stability condition must be satisfied 
when the method is used. Alternating direction im- 
plicit finite difference time domain ( ADI-FDTD ) 
method proposed by Namiki is based on the alternat- 
ing direction implicit technique and is applied to 
Yee' s cell to solve Maxwell ' s equations[2933 . This 
scheme is unconditionally stable and is not dissipa- 
tive. Therefore, the time step can be set arbitrarily 
and does not depend on the Courant stability condi- 
tion, but rather on numerical error. The time step of 
ADI-FDTD can be set much larger,than conventional 
FDTD for a same simulation and it means that time 
step number of ADI-FDTD can be less. Due to the 
same level complication in one step for FDTD and 
ADI-FDTD, the CPU cost for ADI-FDTD can be re- 
duced. In fact the time step can not be set arbitrarily 
to get good accuracy because the numerical dispersion 
of ADI-FDTD is similar to conventional FDTDi4]. 
But when the minimum cell size in the computation is 
much smaller than the wavelength, the time step of 
ADI-FDTD can be much enlarged and result agree 
well with conventional FDTD. 

Recently, ADI-FDTD has been applied to scat- 
tering problem[53, and been extended to dispersive 
media using Z-transfom[61 , auxiliary difference equa- 

this paper, the perfectly matched layer ( PML ) ab- 
sorbing boundary condition for ADI-FDTD in disper- 
sive media is proposed, based on PML for dispersive 
mediaig1, AD1 technique and RC method["]. The 
PML formulations for Debye dispersion are derived. 
The PML formulations for other dispersion can be de- 
rived on the similar approach. ADI-FDTD fomula- 
tions for dispersive media can be obtained easily from 
the PML formulations as a special case. At last the 
scattering of cylinder in soil is simulated under sine 
wave and Gaussian pulse excitations. 

2. PML FOR ADI-F'DTD IN DISPERSIVE 1MEDIA 

We consider 2D TE wave and the PML equations in 
dispersive media with conductivity are written as fol- 
10ws[91 

For simplicity, we consider only the permittivity. In 
time domain, we have[''] 

1 = x , y , €0 is permittivity of free space, em is the in- 
finite frequency relative permittivity, and yn ( r ) is t i o n ~ [ ~ ]  and recursive convolution( RC) methodrg1 . In 
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the electric susceptibility of PML. 

be written as 
Let t = n At in Eq. ( 2 ) ,  At is time step, D, can 

D; = D,(nAt)  = EoemE,(nAt) + 

All field components are assumed to be constant over 
each time interval A t 4 ,  Eq. (3) can be written as 

(4) 
We define 

( 5 )  

 AX^ = XV - X v ( m + l )  (6) 
From (4), we can get 

D",+ln - D; = eO(ern + ~ r p ) E " , + ' ~  - 
2n-1  

E O E ~ E ~  - E o  C E ; - - " ~ A ~ ? ,  (7) 

Substitute (7) into discrete (1) using AD1 technique. 
The calculation of one discrete time step is performed 
using two procedures. 

m=O 

The first procedure 

C 
AY 

E";'ln(i + 1 4 , j )  = C g E z ( i  + 1 4 , j )  + Cyllymx(i + 1 4 , j )  + A[Wa(i + 112,j + 14) + 
ey(i + I 4 , j  +ID)  - W,(i + ID, j  - 14)  - ey(i + IB,j - 1 4 ) l  (8) 

E",'ln(i,j + 14) = C,oE;(i,j + 14)  + C z l q ( i , j  + 14)  - 2[W,'lR(i + 1 4 , j  + 14)  + 
WZ,lR(i  + 1 4 , j  + 14) - W,'ln(i - In,j + 14) - wZ;ln(i - 1 D , j  + IB)] (9) 

(10) 

(11) 

,;lo( i + 1, j + 14) - ,y'ln( i , j  + 10) 
A?2 

Ez(i + l D , j  + 1)  - EE(i + 1 4 , j )  

H",'lR(i + IB,j + 14) = B&H",(i + I 4 , j  + ID) - B,1* 

~ , , + l ~ ( i  + 1 4 , j  + 14) = B y o e y ( i  + I 4 , j  + 14)  + Byl 

The second procedure 
AY 

C 
AY 

E " j l ( i  + 1 4 , j )  = CgE.,'ln(i + l D , j )  + CylY'2'n(i + 1 4 , j )  + "'[H",'l(i + 1 4 , j  + 112) + 
H",+'(i + 1 4 , j  + 14) - W,f'(i + I 4 , j  - 14)  - W,+l(i + I 4 , j  - In)] (12) 

E;+'(i,j + 14) = C,oE",""(i,j + 14) + C,,Y':'"(i,j + 112) - =[H",""(i C,' + 1 4 , j  + 14)  + 
W,,+ln(i + 1 4 , j  + 14)  - W,'ln(i - 112,j + 14) - W2;ln(i - IB,j + ID ) ]  (13) 

where 

At 

(17) 1 
c,l = 2Eo(Em + X r p  )+CT+a7 

At 2 
a*At  

1 - -  4,u 
a*At  

1 + -  
4P 

(18) Brp = 

7] = x , y  
For different dispersion, ?,Y';ln and X+ have 
different expressions. For Debye dispersion, the ex- 
pression for the frequency domain relative permittivi- 

ES - E m  
ty is E ( ~ ) = E ,  +- The relative permittivity 1 + jwto' 
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