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HIGHLIGHTS

e A stochastic SI epidemic model under regime switching is proposed and investigated.
e We establish sufficient conditions for the existence of a unique ergodic stationary distribution.
e We obtain the threshold which ensures the extinction and the existence of the stationary distribution of the epidemic.

ARTICLE INFO

ABSTRACT

Article history:

Received 7 August 2015
Accepted 14 January 2016
Available online 9 February 2016

Keywords:

Stochastic Susceptible-Infective epidemic
model

Threshold

Stationary distribution

Markov switching

Extinction

In this paper, we consider a stochastic Susceptible-Infective (SI) epidemic model under
regime switching. Firstly, by constructing suitable Lyapunov functions, we establish
sufficient criteria for the existence and uniqueness of an ergodic stationary distribution.
Then we obtain the threshold which guarantees the extinction and the existence of the
stationary distribution of the epidemic. Finally, some numerical simulations are introduced
to illustrate our main results.
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1. Introduction

Recently, mathematical models describing the population dynamics of infectious diseases have played an important role
in understanding epidemiological patterns [ 1]. When analyzing an epidemic model, it is an issue to find the threshold which
guarantees whether the disease occurs or dies out. Kermack and McKendrick [2] discovered a threshold condition for the
spread of a disease. From then on, their threshold theory has been extended to some more realistic models.

In the literatures deterministic epidemic models have received much attention (see e.g. [3-6]) and for these deterministic
epidemic models there exists a threshold which is defined as the average number of secondary infectious produced [7]. But
we note that in latest literatures concerning the threshold of stochastic epidemic models (see e.g. [1,8-11]), the threshold
was not investigated analytically for the stochastic SI epidemic model under regime switching. This inspires us to do some
work about the threshold of a stochastic SI epidemic model under regime switching.
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The deterministic nonautonomous SI epidemic model with bilinear incidence is of the following form

ds(t)

T A(t) = BOSDOI(E) — n(0)S(t),
dI(t) (1.1)
T BOSEI(t) — n(OI(),

where S(t) and I(t) denote the susceptible and infective density at time t, respectively. A(t) denotes the recruitment rate,
w(t) stands for the natural death rate of the susceptible and the infective, B(t) is the effective transmission rate of the
disease. A(t), B(t) and w(t) are all positive continuous bounded functions on [0, c0).

On the other hand, as we know, population systems are always affected by the environmental noise, which is an important
component in an ecosystem (see e.g. [12-14]). Therefore, for better understanding the dynamics of the epidemic models,
many authors have introduced stochastic perturbations into the population systems to reveal richer and more complex
dynamics (see e.g. [15-17]). Motivated by the above works, in this paper, we assume that fluctuations in the environment
mainly affect the natural death rate w(t). In practice, we can estimate it by an average value plus an error term. In general,
in view of the central limit theorem, the error term follows a normal distribution. That is to say, we can replace the rate
—u(t) by an average value plus a random fluctuation term —u(t) + o (t)B(t), where B(t) is a Gaussian white noise,
i.e,, B(t) is a standard Brownian motion, o%(t) > 0 denotes the intensity of the white noise. Then corresponding to system
(1.1), the stochastic SI epidemic model takes the following form
ds(t) = (A() — BOSOI() — n()S())dt + o (£)S(t)dB(1), (1.2)
di(t) = (B)S®I(t) — w(®)I())dt + o (DI(t)dB(t). ’

However, in the real world, epidemic models can be perturbed by the colored noise which can cause the population
system to switch from one environmental regime to another (see e.g.[18,19]). Usually, the switching between environmental
regimes is often memoryless and the waiting time for the next switching follows the exponential distribution [20]. Thus,
we can model the regime switching by a continuous-time Markov chain {r(t)};>¢ taking values in a finite state space
S = {1, ..., N}, then system (1.2) with Markov chain becomes the following form
ds(t) = (A(r(t)) — BrENSOIE) — pn(r(E)S())dt + o (r(t))S(t)dB(1), (1.3)
di(t) = (Br()S®It) — ur@)I))dt + o (r(t)I(E)dB(t). '

Stochastic differential equations with regime switching have been widely studied (see e.g. [21-27]). Zhu and Yin [23]
investigated the asymptotic properties such as recurrence and ergodicity of regime-switching diffusions and established
sufficient and necessary conditions for positive recurrence. Zu et al. [27] obtained sufficient conditions for the ergodic
stationary distribution of the solution to a stochastic Lotka-Volterra predator-prey model. In this paper, by constructing
suitable Lyapunov functions, we mainly study the positive recurrence and the existence of the stationary distribution for
system (1.3). Then we present sufficient conditions for the extinction of the disease. At the same time, the threshold of the
extinction and stationary distribution of the epidemic is also obtained.

The organization of this paper is as follows. In Section 2, we present some notations and lemmas concerning the
nonsingular M-matrix and the existence of the ergodic stationary distribution. In Section 3, we establish sufficient conditions
for the existence of a unique stationary distribution. Section 4 is devoted to studying the conditions for the extinction of
the disease. In Section 5, some numerical simulations are provided to demonstrate the analytical findings. Finally, some
conclusions and future directions are given.

2. Preliminaries

Throughout this paper, unless otherwise specified, let (§£2, ¥, P) be a complete probability space with a filtration
{F:}t>0 satisfying the usual conditions (i.e., it is right continuous and %, contains all P-null sets). Moreover, for the sake
of convenience, we define the following symbols. Let R, = [0, 00), R, = {x = (X1, ...,X,) € R" : x; > 0,i=1,...,n}
and Z™" = {A = (@j)nxn : G5 < 0,1 # j}. Let {r(t), t > 0} be a right-continuous Markov chain on this probability space
(82, 7, P) taking values in a finite state space S = {1, 2, ..., N}. Forany vector g = (g(1), ..., g(N)),set g = minges{g(k)}
and § = maxycs{g(k)}. If f is a bounded function on R, define f* = Sup;eg, f(t). Assume the generator I = (y;j)nxn Of
the Markov chain is given by

) ) A+ 0(A), ifi+j,
P{r(t +4) =jlr(t) =i} = {J{UJF ViiA(-‘r)O(A) 7?f]i =j

where A > 0, y; > 0 is the transition rate from i to j if i # j while Zf": 1 ¥i = 0. We suppose that the Markov chain is
independent of the Brownian motion. Suppose further that the Markov chain r(t) is irreducible and has a unique stationary



Download English Version:

https://daneshyari.com/en/article/1713402

Download Persian Version:

https://daneshyari.com/article/1713402

Daneshyari.com


https://daneshyari.com/en/article/1713402
https://daneshyari.com/article/1713402
https://daneshyari.com

