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a b s t r a c t

The analysis of Discrete Event Dynamic Systems suffers from thewell known state explosion
problem. A classical technique to overcome it is to relax the behavior by partially removing
the integrality constraints and thus to deal with hybrid or continuous systems. In the
Petri nets framework, continuous net systems (technically hybrid systems) are the result
of removing the integrality constraint in the firing of transitions. This relaxation may
highly reduce the complexity of analysis techniques but may not preserve important
properties of the original system. This paper deals with the basic operation of fluidization.
More precisely, it aims at establishing conditions that a discrete system must satisfy so
that a given property is preserved by the continuous relaxation. These conditions will
be mainly based on the marking homothetic behavior of the system. The focus will be on
logical properties as boundedness, B-fairness, deadlock-freeness, liveness and reversibility.
Furthermore, testing homothetic monotonicity of some properties in the discrete systems
is also studied, as well as techniques to improve the quality of the fluid relaxation by
removing spurious solutions.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Petri nets [1,2], as other formalisms for Discrete Event Dynamic Systems (DEDS), suffer from the state explosion problem.
Such a problem may render analysis techniques based on exhaustive enumeration computationally infeasible, particularly
for large population systems. A promising approach to overcome this difficulty is to relax the original discrete model by
explicitly removing the integrality constraint in the firing of transitions. This process is known as fluidization, being its result
a continuous Petri net (PN) in which both the firing amounts of transitions and the marking of places are non-negative real
quantities (see [3,4]).

Continuous PNs allow the use of some polynomial time complexity techniques for several analysis purposes [4]. Unfor-
tunately, continuous nets may not always preserve important properties of the discrete model (first pointed out in [5]). For
this reason, it is crucial to study which discrete PN systems can be ‘‘successfully’’ fluidified and which ones not. Moreover,
some techniques can be used to improve the fluidization.

At first glance, the simple way in which the basic definitions of discrete models are extended to continuous ones may
make us naively think that their behavior will be similar. However, the behavior of the continuous model can be completely
different just because the integrality constraint has been dropped. In otherwords, not all DEDS can be satisfactorily fluidified.
Consider, for instance, the net system in Fig. 1(a). If considered as discrete, the system is deadlock-free: from m0 = (3, 0),
both t2 and t1 can be fired alternatively, and no deadlock can be reached. However, if considered as continuous, transition
t2 can be fired in an amount of 1.5 from m0, leading to a deadlock markingmd = (0, 1.5).
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Fig. 1. (a) Not homothetically deadlock-free PN system [5]; (b) homothetic deadlock-free PN system.

Notice that deadlock-freeness of the discrete system in Fig. 1(a) highly depends on its initial marking. In fact, if the initial
marking is doubled, i.e., if we considerm′

0 = (6, 0), then the system deadlocks by firing t2 an amount of 3.
Let us now consider the PN in Fig. 1(b), which exhibits a different behavior. Considered as discrete, it is deadlock-free for

m0 = (2, 1, 0, 0, 0). Moreover, it is deadlock-free for any initial marking proportional tom0, i.e.,m′

0 = k ·m0, with k ∈ N>0.
When the PN system is fluidified, i.e., the PN system in Fig. 1(b) is considered as a continuous system, it preserves

deadlock-freeness. We will exploit this idea to extract conditions for the preservation of properties.
The present paper explores the kind of features that a discrete net system must exhibit so that a given property is

preserved when it is fluidified. It focuses on classical properties as boundedness, B-fairness, deadlock-freeness, liveness
and reversibility. The main ideas used here are: (a) the property of homothecy of continuous firing sequences (needed for
Lemma 16); (b) the fact that every real number could be approximated by a rational number (used in Lemma 17). Properties
preservation is built over these two ideas. Furthermore, homothetic monotonicity of boundedness, B-fairness and deadlock-
freeness properties in discrete Petri nets is studied, as well as property preservation for some net system subclasses. Some
techniques to improve the fluidization are also considered, where the spurious deadlocks are removed with the addition of
some implicit places.

This work is organized as follows. Section 2 recalls some definitions that will be used in the rest of the paper. Section 3
sets the main results concerning homothetic properties in a discrete net system and its relations with the fluid counterpart.
In Section 4, some results about homothetic boundedness and homothetic B-fairness of discrete PN are presented. Section 5
studies whether a discrete PN is homothetically deadlock-free and some techniques for the elimination of spurious
deadlocks. Finally, an application example is presented in Section 6, while Section 7 deals with some conclusions.

2. Preliminary concepts and definitions

Some concepts used in the rest of the paper are defined here. In the following, it is assumed that the reader is familiar
with discrete Petri nets (see [1,2] for a gentle introduction).

2.1. Petri nets

Definition 1. A PN is a tuple N = ⟨P, T , Pre, Post⟩ where P = {p1, p2, . . . , pn} and T = {t1, t2, . . . , tm} are disjoint and
finite sets of places and transitions, and Pre, Post are |P| × |T | sized, natural valued, incidence matrices.

Given a Petri net and a marking, the discrete Petri net system is defined.

Definition 2. A discrete PN system is a tuple ⟨N ,m0⟩D where N is the structure andm0 ∈ N|P| is the initial marking.

In discrete PN systems, a transition t is enabled at m if for every p ∈
•t , m[p] ≥ Pre[p, t]. An enabled transition t can be

fired in any amount α ∈ N such that 0 < α ≤ enab(t,m), where enab(t,m) = minp∈•t⌊
m[p]

Pre[p,t]⌋.
The main difference between discrete and continuous PNs is in the firing amounts and consequently in the marking,

which in discrete PNs are restricted to be in the naturals, while in continuous PNs are relaxed into the non-negative real
numbers [3,4]. Thus, a continuous PN system is understood as a relaxation of a discrete one.

Definition 3. A continuous PN system is a tuple ⟨N ,m0⟩C where N is the structure andm0 ∈ R|P|

≥0 is the initial marking.

In continuous systems, a transition t is enabled at m if for every p ∈
•t , m[p] > 0. It can be fired in any amount α ∈ R

such that 0 < α ≤ enab(t,m), where enab(t,m) = minp∈•t{
m[p]

Pre[p,t] }.
In both discrete and continuous PN systems, the firing of t in a certain amount α leads to a new marking m′, and it is

denoted as m αt
−→ m′. It holds m′

= m + α · C[P, t], where C = Post − Pre is the token flow matrix (incidence matrix if
N is self-loop free) and C[P, t] denotes the column t of the matrix C . The state (or fundamental) equation,m = m0 + C · σ,
summarizes the way the marking evolves, where σ is the firing count vector (also known as the Parikh vector) associated
with the fired sequence σ .
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