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a b s t r a c t

This paper studied the stabilization of switched linear systemswith polytopic uncertainties
by employing the methods of nonsmooth analysis and the composite quadratic Lyapunov
functions. Above all, the minimum quadratic functions and the directional derivatives
along the vertex directions of subsystems are applied to construct the new switching law.
Then, some sufficient conditions for stabilization of switched linear systems are established
considering the sliding modes and the directional derivatives along sliding modes. Finally,
numerical examples are given to demonstrate the effectiveness of the synthesis results.
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1. Introduction

It is well known that many practical systems are inherently multimodal, and several dynamical subsystems are required
to describe their behavior which may depend on various environmental factors. In addition, there are some systems
that sometimes cannot be asymptotically stabilized by a single continuous feedback control law but can be stabilized by
switching law [1]. In the last two decades, considerable interest in the work on switched systems has attracted researchers’
attention in particular and many significant results on stability and stabilization problems for various types of switched
systems have been established [2–11].

As a hybrid dynamical system which is composed by a family of continuous-time or discrete-time subsystems with a
rule orchestrating the switching between the subsystems [12,13], switched systems have many applications in mechanical
control systems, the automatic industry, aircraft and air traffic control switching, power converters, etc.

From the practical viewpoint, it is important to investigate switched systems with uncertain parameters. As pointed out
in [14], polytopic uncertainties exist in many real systems, and most of the uncertain control systems can be approximated
by systems with polytopic uncertainties. The polytopic uncertain systems are less conservative than systems with norm
bounded uncertainties [15]. Recently, the stability and stabilization problems for both continuous-time and discrete-time
switched linear systemswith polytopic uncertainties are investigated in [16,17]. In particular, [16] investigated the quadratic
stabilization problem via state feedback, and provided sufficient conditions such that the switched system composed of two
subsystems is quadratically stabilized. More recently, necessary and sufficient conditions for continuous-time case via state
feedback are proved in [18,19].

On the other hand, increasing nonquadratic Lyapunov functions have been used in stability analysis or stabilization
of the switched systems [7,8,20–23]. Considering the discrete-time systems, in [7], the authors studied the exponential
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stabilization problem for the switched linear systems based on a special control-Lyapunov function which can make the
hybrid-control policy of the related switched system be derived analytically and computed efficiently. The generating
functions of the switched linear systems are proposed and the exponential growth rates of the system trajectories in [8]
are obtained under various switching laws. In particular, necessary and sufficient conditions for the exponential stability of
the switched linear systems are derived based on these radii of convergence.

For the case of continuous-time dynamical systems, Hu and Lin [24] proposed the composed quadratic Lyapunov func-
tions for constrained control systems. The composite quadratic Lyapunov function turned out to be very effective in dealing
with some constrained control systems as well as a class of more general nonlinear systems [2,25,26].

In this paper, we focus on the continuous-time switched linear systems. The stabilization problems of switched linear
systemswith polytopic uncertain subsystems are studied by using composite quadratic functions. To the best of the author’s
knowledge, no results are reported in the literature on the stability and stabilization of switched systems with polytopic
uncertainties by employing composite quadratic Lyapunov functions. The contributions in our work mainly include three
aspects. First, the switching law is constructed based on the directional derivatives along the vertex directions of all
subsystems. Second, some analysis results on possible sliding modes in the systems are established in this paper. Third,
it is different from the approaches in Refs. [16,18,19] that the nonquadratic Lyapunov function is employed to reduce
the conservatism and establish the matrix conditions for stabilization. Numerical examples show that our test results are
superior to the ones in [16,18,19].

The remainder of this paper is organized as follows. In Section 2, we briefly review some preliminaries especially three
composite quadratic functions and their directional derivatives. Then, the stabilization results based on themin function are
established in Section 3, and the conditions as matrix inequalities for stabilization are derived. Three simulation examples
are presented in Section 4 to demonstrate the effectiveness of the min quadratic Lyapunov function and the stabilization
method. Finally, concluding remarks are given in Section 5.

Notation:
The following notation will be used in this paper.

• I[k1, k2]: the set of integers {k1, k1 + 1, k1 + 2, . . . , k2};
• ∇V (x): gradient of V at x;
• ∂V (x): subdifferential of V at x;
• V̇ (x; ζ ): one-sided directional derivative of V at x along ζ ;
• co{S}: convex hull of a set S.

2. Preliminaries

There are many methods to construct the switching law for the stabilization of switched systems [2,16,27]. Just as in the
paper [2], our switching law is constructed by employing directional derivatives and nonquadratic functions. Now we first
briefly review some preliminaries.

2.1. The directional derivative and subgradient

Suppose f is defined from Rn to R̄ = R


{−∞, +∞}, and f (x) is finite. It is well known that the one-sided directional
derivative of f at x in direction ζ can be expressed by

ḟ (x; ζ ) = lim
∆t↓0

f (x + ζ∆t) − f (x)
∆t

.

Suppose f is a convex function in Rn, and finite at x. The set

∂ f (x) = {x∗
| f (z) ≥ f (x) + x∗T (z − x), ∀z ∈ Rn

}

is called the subdifferential of f at x and x∗ is a subgradient of f at x [28]. For a convex function f in Rn, f is differential at x0
if and only if ∂ f (x0) has only one vector. In this case we have ∂ f (x0) = ∇f (x0).

For a non-convex function, the subdifferential fails to exist in the convex sense. Suppose that a function f is locally
Lipschitz on Ω ⊂ Rn. The generalized directional derivative of f at x in ζ , denoted f 0(x; ζ ), is defined as

f 0(x; ζ ) = lim sup
y→x
t↓0

f (y + tζ ) − f (y)
t

.

The generalized gradient or the Clarke’s differential of f at x, denoted as ∂C f (x), is given by

∂C f (x) = {x∗
∈ Rn

| x∗T ζ ≤ f 0(x; ζ ), ∀ζ ∈ Ω ⊂ Rn
}.

If f is locally Lipschitz near x and S is any set of Lebesgue measure 0 in Rn and the set of points at which f fails to be
differentiable is denoted by Ωf . Then

∂C f (x) = co

lim
xi→x

∇f (xi) | xi ∉ S, xi ∉ Ωf


. (1)
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