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a b s t r a c t

The optimization problem of fishing for a stochastic logistic model is studied in this paper.
Besides a standard geometric Brownian motion, another two driving processes are taken
into account: a stationary Poisson point process and a continuous-time finite-stateMarkov
chain. The classical harvesting problem for this model is a big difficult puzzle since the
corresponding Fokker–Planck equationswith three types of noise are very difficult to solve.
Our main goal of this paper is to work out the optimization problem with respect to
stationary probability density. One of themain contributions is to provide a new equivalent
approach to overcome this problem.More precisely, an ergodicmethod is used to show the
almost surely equivalency between the time averaging yield and sustainable yield. Results
show that the optimal strategy changes with environment. An interesting thing is that the
optimal strategy for each state is equivalent to the global optimality.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Investigations on various logistic-type systems are one of the most important themes in mathematical ecology. Optimal
harvesting problem is an important and interesting topic from both biological and mathematical point of view. The optimal
harvesting problems have received a lot of attention since Clark’s [1,2] classical works on the following deterministic logistic
system with catch-per-unit-effort (CPUE) hypothesis:

dX(t) = X(t) (a − bX(t)) dt − EX(t)dt. (1.1)

In Eq. (1.1), X(t) represents the size of population at time t , a denotes the intrinsic growth rate of X(t), a/b is the carrying
capacity of the environment, EX(t) is the CPUE hypothesis of harvesting function. Clark showed the optimal harvesting effort
for Eq. (1.1) is E∗

= a/2 and the maximum sustainable yield is a2/(4b). The fact that population systems are inevitably
subject to various environmental noises is accepted by a large number of scholars, such as [3–8] and references cited there
in. Beddington and May [9] showed the optimal harvesting for natural populations in a randomly fluctuating environment
in Science. In their paper, they proved the optimal harvesting effort for

dX(t) = X(t) (a − bX(t)) dt − EX(t)dt + σX(t)dB(t) (1.2)

is (a − σ 2/2)/2 and the maximum sustainable yield is (a − σ 2/2)2/(4b). Here, B(t) is a standard Brownian motion defined
on a complete probability space (Ω, F , {Ft}t≥0, P). σ 2/2 is the intensity of white noise. In addition, population systemsmay
be affected by another type of environmental noise, namely, color noise or say telegraph noise. This telegraph noise can be
illustrated as a switching between two ormore sub-regimes of different environments [10,11]. For instance, the growth rate
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for some fish in dry season will be much different from it in rainy season. Wang [12] considered color noise on a stochastic
logistic model with CPUE hypothesis. He studied the following system

dX(t) = X(t) (a (r (t)) − bX (t)) dt − EX (t) dt + σ (r (t)) X (t) dB(t), (1.3)
where r(t) is a continuous-time finite-state Markov chain with values in the finite state space S = {1, 2, . . . ,N}. For any
state i ∈ S, a(i) and σ(i) are both positive constants. That is to say, Eq. (1.3) can be considered as a switching between
N regimes of Eq. (1.2). For each regime i ∈ S, it has different parameters. Results show that the optimal harvesting effort

for Eq. (1.3) is
N

i=1 πi

a (i) − σ 2 (i) /2


/2 and the maximum time averaging yield is

N
i=1 πi


a (i) − σ 2 (i) /2

2
/(4b),

where π = (π1, π2, . . . , πN) is the stationary distribution for the color noise r(t). For Eq. (1.3), the author only obtained
the optimization in time averaging sense, but did not get the classical optimal harvesting problem with sustainable yield
function.

Anything else, population dynamics may suffer sudden environmental shocks, such as: earthquakes, epidemics, floods,
toxic pollutants, hurricanes and so on. e.g., Tangshan Earthquake (China) in 1976, the Three Mile Island nuclear accident of
waste furnace (US) in 1979, the SevereAcuteRespiratory Syndromes emerged in 2003, the earthquake and the corresponding
nuclear threat to Japan in 2011 and so on. These sudden environmental shocks will cause jumps in population size, and
model (1.3) cannot describe these phenomena exactly. To describe this type of environmental noise, scholars introduce
a jumping process into the underlying population dynamics, and use stochastic differential equations (SDEs) driven by
jumping processes to explain these phenomena. We regard this type of noise as jumping noise. Rong Situ [13] (see page 32)
said ‘‘stochastic perturbation of jumps in a dynamical system usually can bemodeled as a stochastic integral with respect to
some point processes, i.e. its martingale measure or counting measure’’. Motivated by this, we will use a stationary Poisson
point process as the driven jumping processes in this paper. Let p (t, ω) represent a stationary Ft-adapted Poisson point
process. N is the Poisson countingmeasure generated by p (t, ω). λ is the intensity measure of N which is defined on a finite
measurable subset Y ⊂ (0, ∞). N is the compensated random measure defined by N (dt, du) = N (dt, du) − λ (du) dt .
Consequently, the corresponding stochastic logistic hybrid jump-diffusion process driven by p (t, ω) has the following form:

dX(t) = X(t) (a (r (t)) − b (r (t)) X (t)) dt − E (r (t)) X (t) dt

+ σ (r (t)) X (t) dB(t) + X

t−
 

Y
γ (r (t) , u)N (dt, du) . (1.4)

Here, X

t−

is the left limit of X (t). γ (r(t), u) reflects the birth rate (γ > 0) or death rate (γ < 0) caused by the jumps to

some extent. So, for each i ∈ S, we ask for γ (i, u) to be a bounded function such that γ (r (t) , u) > −1, u ∈ Y. For more
information, please see paper [14]. The other parameters have the same meanings as models (1.1)–(1.3). Brownian motion
B(t), Markov chain r(t) and stationary Poisson point process p (t, ω) are always assumed to be mutually independent and
defined on the same complete probability space (Ω, F , {Ft}t≥0, P). Markov chain r(t) is assumed to be irreducible since
this standing hypothesis implies the hybrid system will switch from any sub-state to any other sub-state. In addition, this
assumption also means that Markov chain has a unique stationary distribution [15] π = (π1, π2, . . . , πN) ∈ R1×N . Eq. (1.4)
can be regarded as switchings from one sub-system to another according to Markov Chain. The switching between these N
sub-regimes is governed by the Markov chain on S = {1, 2, . . . ,N}.

The main contributions of this paper are listed as follows:
• the model includes three types of environmental noise which is more grounded in reality. The explicit solution for a

logistic model with three types of environmental noise is given in Lemma 3.1;
• we provide a technique to handle the case when all the parameters in Eq. (1.4) are assumed to depend on the Markov

chain r(t) (see the proof of Theorem 3.1). This assumption is more reasonable than model (1.3) since all the parameters
will changewith the environment. Take harvesting effort as an example, E(r(t)) implies the harvesting effort will change
with the environment;

• a new approach is given to do the optimal harvesting problems which can avoid the puzzle of solving the complicated
Fokker–Planck equations;

• wegive thenumerical simulations for the stochastic logisticmodelwith three types of noises, and give a brief introduction
of its principle (see Section 6).

As far aswe know, there are few results about Eq. (1.4), and this is the first attempt to study the optimal harvesting problems
for Eq. (1.4).

2. Problem statement

For any twice continuously differentiable function V (·, i), the infinitesimal generator operator Lt for Eq. (1.4) is
defined by

LtV (x, i) := Vx(x, i)x [a(i) − E(i) − b(i)x] +
1
2
Vxx(x, i)σ 2(i)x2 +

N
j=1

γijV (x, j)

+


Y
[V (x + γ (i, u)x) − V (x, i) − Vx(x, i)xγ (i, u)] λ (du) , i = 1, 2, . . . ,N, (2.1)
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