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a b s t r a c t

Reliability analysis is often based on stochastic discrete event models like stochastic
Petri nets (SPNs). For large dynamical systems with numerous components, the analytical
expression of the SPNs steady state is full of complexities because of the combinatory
explosion with discrete models. Moreover, the estimation of mean markings thanks
to simulations is time consuming in case of rare events. For these reasons, Petri net
fluidification may be an interesting alternative to provide a reasonable estimate of the
asymptotic behavior of stochastic processes. Unfortunately, the steady states of SPNs and
timed continuous Petri nets (contPNs) with the same structure, same initial marking
and same firing rates are mainly often different. The region of SPN steady states (when
firing rates are defined in a polyhedral area) contrasts with that of contPN ones. The
purpose of this paper is to illuminate this issue in taking advantage of the piecewise-
affine hybrid structure of contPNs. Regions and critical regions are defined in the marking
space in order to characterize this structure. Based on this characterization, the main
contribution is to propose a transformation of the considered SPN into a contPN with the
same structure, modified firing rates and homothetic initial marking so that the corrected
contPN converges partially to the samemeanmarking than the SPN. Consequently, a global
understanding of an SPN steady state can be obtained according to the corrected contPN.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Reliability analysis is amajor challenge to improve the safety of industrial processes. For complex dynamical systemswith
numerous interdependent components, such studies are mainly based on stochastic discrete event models like stochastic
Petri nets (SPNs) [1,2]. Suchmodels lead to analytical results and also to numerical simulations. But in case of large systems,
the combinatory explosion limits the use of analytical results and the simulation with SPNs may also be slow due to the
possible occurrence of rare events. In this context, partial or complete fluidification of the discrete models can be discussed
as a relaxation method. Several extensions of SPNs have been proposed for that purpose. Such models are hybrid systems.
Timed continuous Petri nets under infinite server semantic (contPNs) are piecewise-affine hybrid systems that approximate
the discrete nature of Timed Petri nets [3,4]. Markovian and hybrid Markovian Petri nets have also been introduced [5,6].
Such models, based on contPNs, include additive Gaussian variables to approximate SPNs. Fluid stochastic Petri nets are
another extension of hybrid nets with discrete and continuous portions that may affect each other [7]. Finally, hybrid
adaptive Petri nets have also been introduced with transitions that may behave in a continuous or discrete mode [8]. The
previous hybrid fluidmodels are useful for performance evaluation and reliability analysis but provide only approximations
of the stochastic processes under consideration.
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This paper continues the investigation of stochastic systems with contPNs. It is devoted to the equivalence of SPNs and
contPNs in the long run (i.e. same asymptotic mean markings and average throughputs). In our preceding works, we have
pointed out the limits of the trivial fluidification of SPNs (i.e. contPNs with the same net structure, same initial marking
and same transition firing rates). Sufficient conditions for equivalence in the long run have been discussed according
to the partition in regions of the marking space and to the presence of critical regions. Characterizations of the regions
have been proposed in full and reduced state spaces [9,10]. The particular case of mono T -semiflow PNs has been also
investigated [11]. Then, contPNs with piecewise-constant firing rates have been proposed [12] for long run equivalence in
non-critical regions. Themain contribution of this paper is to define contPNs for long run equivalence also in critical regions.
Homothetic transformations of the initial marking and modified firing rates are considered so that the corrected contPNs
converge partially to the exact steady state of SPNs. In addition, in comparison with our preceding works [11,9,10,12]
the firing rates are no longer defined as piecewise-constant functions but as constant parameters. The proposed results
are helpful in the sense that they provide a better global understanding of SPNs steady state when firing rates vary in a
polyhedral region. They can be used to work out continuous models that have distributions of steady states similar to the
ones of SPNs. As a consequence, the resulting models could be used to evaluate the performances of stochastic or hybrid
stochastic systems. Reliability issues are a concern at first. But they could also be used to design observers or controllers
according to the proposed class of contPNs [13,14].

The paper is organized as follows. Section 2 presents stochastic and timed continuous Petri nets. Section 3 introduces
reduced state variables and contains a characterization of contPNs regions in reduced and full state spaces. Section 4 is
devoted to the fluidification of SPNs. The limitations of trivial fluidification are discussed. Then, sufficient conditions for local
and global long run equivalences are established. Section 5 presents two examples and Section 6 provides some conclusions.

2. Petri nets

2.1. Notations

A Petri net (PN) is defined as < P, T ,WPR,WPO > where P = {Pi} is a set of n places and T = {Tj} is a set of q transitions,
W = WPO −WPR ∈ (Z)n×q is the incidencematrix,M(t) is the PNmarking vector with t ≥ 0 the time variable andMI the PN
initial marking [3]. Each transition Tj fires according to the round towards zero (i.e. ‘‘floor’’ function) of its enabling degree
enabj(M(t)):

enabj(M(t)) = min{mk(t)/wPR
kj , Pk ∈

◦Tj} (1)

where ◦Tj stands for the set of Tj upstream places. A firing sequence σ is defined as an ordered series of transitions that
successively fire from initial marking MI to marking M (i.e. [MIσ > M). Such a sequence may be represented by the PN
firing count vector σ(t) = (σj(t)), j = 1, . . . , q. σ(t) is an application from R+ to (Z+)q such that, for any t ≥ 0, σj(t) is the
number of Tj firings from initial time to t .

PNsmay have P-semiflows and T semiflows. A P-semiflow y ∈ (Z+)n is a non-zero solution of equation yT .W = 0 (i.e. yT
is a left annuller of W ). A Petri net is conservative if a P-semiflow y exists that covers all places (i.e. y > 0). Let us define
Y ∈ (Z+)n×hp

= (y1| . . . |yhp) as the matrix obtained from the hpminimal P-semiflows yi, i = 1, . . . , hp ofW (i.e. yi is not a
proper superset of the support of other P-semiflows). Y is of rank hp and satisfies Eq. (2):

Y T .M(t) = C, t ≥ 0 (2)

with C = Y T .MI . A T -semiflow z ∈ (Z+)q is a non-zero solution of equationW .z = 0 (i.e. z is a right annuller ofW ). A Petri
net is consistent if a T -semiflow z exists that affects all transitions (i.e. z > 0). Let us define Z ∈ (Z+)n×ht

= (z1| . . . |zht)
as the matrix of rank ht obtained from the ht minimal T -semiflows zj, j = 1, . . . , ht of W (i.e. zj is not a proper superset of
the support of other T -semiflows). Join free (JF) nets are PNs such that |

◦Tj| = 1, j = 1, . . . , q, and choice free (CF) nets are
PNs such that |Pi

◦
| = 1, i = 1, . . . , n. Conservative JF nets are mono P-semiflow (MPS-PN) and consistent CF nets are mono

T -semiflow (MTS-PN) [15].
PN1 and PN2 [16], described in Fig. 1 are two examples of consistent PNs. PN1 has 2 joins on T1 and T2 and a single choice

according to P4. The incidence matrices are given byWPR1 and WPO1:

WPR1 =

2 0 0
0 1 0
0 0 1
2 1 0

 , WPO1 =

0 1 1
1 0 0
1 0 0
0 0 3

 .

PN1 has 2 P-semiflows: y11 = (1 1 1 0)T , y12 = (1 0 4 1)T , a single T -semiflow z1 = (1 1 1)T and one can define Y (PN1) =

(y11y12) ∈ (Z+)5×2, Z(PN1) = (z1) ∈ (Z+)4×1 and C(PN1) = (17 19)T . The P-semiflow y11 means that the global marking
m1 + m2 + m3 in the group of places P1, P2 and P3 is constant. Similarly the T -semiflow z1 means that the successive firings
of transitions T1 to T4 let the marking unchanged.

PN2 has also 2 joins on T1 and T2 and a single choice according to P1. The incidence matrices are given byWPR2 andWPO2.
PN2 has 2 P-semiflows: y21 = (0 0 0 1 1)T , y22 = (1 1 2 1 0)T and a single T -semiflow z2 = (1 1 1 1)T . Let us define
Y (PN2) = (y21y22) ∈ (Z+)5×2, Z(PN2) = (z2) ∈ (Z+)4×1 and C(PN2) = (4 5)T .
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