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a b s t r a c t

This paper deals with Earth-to-Moon transfers in the patched three-body approach, in which the Sun–
Earth–Moon–Spacecraft four-body system is approximated by two coupled Circular Restricted Three-
Body Problems (CR3BP). This approach provides preliminary solutions that can be numerically refined
into full four-body solutions. The standard transfers in this approach are low-energy manifold guided
solutions with long transfer time which connect transit and non-transit orbits of each three-body system.
Besides the standard transit-non-transit connections, there are alternative solutions involving a bi-
parametric family of quasi-periodic orbits around the Earth. These solutions connect quasi-periodic or-
bits on two-dimensional tori of the Sun–Earth–Spacecraft system with L1 or L2 transit solutions of the
Earth–Moon–Spacecraft system to provide transfers with lunar ballistic capture and short flight time. We
review the dynamical elements employed to obtain the different classes of transfers and give examples of
solutions obtained from sets of initial conditions around the Earth that are consistent with current in-
frastructure for space exploration.

& 2016 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Lunar exploration has been receiving renewed attention, as
attested by recent NASA's LADEE, ARTEMIS, and GRAIL missions,
and CNSA's Chang'e 3 mission. As missions become more de-
manding, they often require alternative solutions based on N-body
gravitational effects on the spacecraft, instead of the traditional
orbits based on two-body conic solutions. These novel transfers
allow us to reduce propellant mass or provide non-Keplerian or-
bits that fulfill specific mission requirements [1].

For example, in 2010, the two probes of the ARTEMIS mission
navigated to the Earth–Moon Lagrangian points L1 and L2 and were
kept in unstable quasi-periodic orbits to investigate how the Sun's
radiation interacts with the Moon, and to survey the applicability
of lunar regions as staging or communication relay locations [2].
Also, in 2011, the two spacecraft of the GRAIL mission used low-
energy trajectories to leave the Earth, following the invariant
structures associated to the Sun–Earth Lagrangian point L1 to reach
the Moon [3].

The trajectories used by these missions are solutions of the

Circular Restricted Three-Body Problem (CR3BP).
Some restricted four-body systems can be modeled in an initial

approach by two coupled three-body systems. This approximation,
known as the patched three-body approach, provides preliminary
solutions to be used as initial guess for a numerical procedure that
converges to a full four-body solution [1,4]. In particular, the Sun–
Earth–Moon–Spacecraft (Sc) system can be decomposed into the
Sun–Earth–Sc (SE) and the Earth–Moon–Sc (EM) systems.

In fact, the rescue trajectory for the Hiten Mission, a paradig-
matic example for a class of low-energy Earth-to-Moon orbits
obtained by considering the gravitational effects of the Earth, the
Moon, and the Sun on the motion of the spacecraft simultaneously
[5–8], was later found to be related to the hyperbolic invariant
manifolds of the CR3BP by employing the patched three-body
approximation [9–11]. Besides trajectories connecting different
hyperbolic objects, quasiperiodic orbits of the CR3BP have also
been found to provide alternative transfer solutions in the Solar
system. For example, there are different types of quasiperiodic
orbits with long-term stability in the Mars–Phobos–Sc system that
connect with the invariant manifolds of L1 Halo orbits [12]. Quasi-
periodic orbits were also studied as potential alternatives to long
term monitoring of solar activity in the Sun–Earth system [13].
Moreover, conic or resonant arcs have been demonstrated to serve
as transfer mechanisms between non-resonant orbits in N-body
environments [14].

This paper presents a survey of preliminary Earth-to-Moon
transfers in the patched three-body approach, using the planar
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case of the CR3BP. Essentially, two types of transfers with different
dynamical properties are found by using this approach:
(i) solutions which connect non-transit orbits associated to L1 or L2

of the SE system with transit orbits associated to L2 of the EM
system; and (ii) solutions which connect quasi-periodic orbits of
the SE system with L1 or L2 transit orbits of the EM system.

The patching procedure is discussed and each transfer possi-
bility is illustrated, giving concrete examples of solutions obtained
from sets of initial conditions around the Earth that are consistent
with current infrastructure for space exploration. Additionally,
different ballistic capture scenarios are illustrated with some
considerations on the general dynamics and the energy cost to
reach them by means of quasi-periodic orbits of the SE system.

2. Mathematical model

The planar CR3BP describes the motion of a spacecraft moving
in the gravitational field of two primaries P1 and P2, with masses
m1 and m2 [15]. The equations of motion in the normalized synodic
reference frame, are
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where r1 and r2 denote the distances from the particle to P1 and P2,
respectively, and μ, known as the mass parameter of the CR3BP, is
the dimensionless mass of P2.

The normalized variables are such that the distance between P1

and P2, the sum of their masses, and their angular velocity around
the barycenter are normalized to one. So, one complete rotation of
the primaries around their barycenter with respect to an inertial
frame occurs in π2 dimensionless units of time, and, in the synodic
frame, P1 and P2 are fixed at μ( ), 0 and μ( − )1, 0 , respectively.

The planar CR3BP has a conserved quantity, the Jacobi con-
stant:

Ω( ̇ ̇ ) = ( ) − ( ̇ + ̇ ) = ( )J x y x y x y x y C, , , 2 , , 42 2

and five equilibrium points: L1, L2, and L3, located on the x-axis,
saddle-center type; L4 and L5, located at μ( − ∓ )1/2, 3 /2 , linearly
stable for μ μ∈ ( )0, 1 , with μ = ( − )9 69 /181 , where μ1 is Routh's
critical mass ratio. Ck denotes the Jacobi constant value at Lk,

=k 1, 2, 3, 4, 5. For each μ, these values define the five possible
Hill region configurations, corresponding to distinct transport
possibilities through phase space.

For <C Ck, =k 1, 2, 3, there is a uniparametric family of ret-
rograde periodic orbits around Lk, called Lyapunov orbits, denoted
by Γ . The first elements of this family present Monodromy ma-
trices with a pair of complex eigenvalues, ζ1 and ζ2, associated to
the center manifold and a real pair of eigenvalues, ζ3 and ζ4, with
ζ < 13 , ζ > 14 , and ζ ζ = 13 4 , associated to stable and unstable
manifolds, respectively, defined by
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Ws and W u are locally homeomorphic to two-dimensional
cylinders and act as separatrices in phase space for a given C , so
that four categories of orbits are defined in the neck region around
each Lk, =k 1, 2, 3: the Lyapunov orbit itself, orbits that approach
it asymptotically, transit orbits that cross the neck region from one
side to the other, and non-transit orbits [4,16,17]. For lower values
of C , a bifurcation may occur and these periodic orbits of center-
saddle type become saddle–saddle solutions.

3. The patched three-body approach

The patched three-body approach was introduced by Koon
et al. to take advantage of the dynamical structure of the CR3BP to
obtain preliminary solutions of restricted four-body systems de-
scribed by the Concentric Circular Model and the Bicircular Model
[1,9,10].

Indeed, in an initial approximation, the Sun–Earth–Moon–Sc
can be decomposed into two coupled planar CR3BPs, given that
the mean eccentricity of Moon's orbit around the Earth is ap-
proximately 0.05, the mean inclination to the ecliptic is °5.14 , and
the mean eccentricity of Earth's orbit around the Sun is approxi-
mately 0.0167. The mass parameters of the SE and of the EM
systems are, respectively, μ = × −3.03591 10SE

6 and
μ = × −1.21506683 10EM

2. It is worth to mention that this value of
μSE includes the mass of the Moon along with the mass of the
Earth, so, in effect, the SE system corresponds to the Sun–(Earth–
Moon) CR3BP.

In this paper, the coordinates in the SE synodic reference frame
are denoted by ( ̇ ̇ )X Y X Y, , , , while ( ̇ ̇)x y x y, , , corresponds to the
coordinates in the EM synodic reference frame.

For future reference, the critical values of the Jacobi constant in
the first and the second Lagrangian points of the SE and the EM
systems are given in Table 1.

The original key idea to design a preliminary Earth-to-Moon
transfer in the patched three-body approach is to use two solution
arcs to connect an initial geocentric orbit to a final selenocentric
orbit: the first arc is a non-transit orbit associated to a Lyapunov
orbit around L1,2 of the SE system, and the second arc is a transit
orbit associated to a Lyapunov orbit around L2 of the EM system
[1,10]. The two arcs connect because Γ( )W u SE

1,2 and Γ( )Ws EM
2 in-

tersect each other. Fig. 1(a) shows the projection onto position
space in SE synodic coordinates of a two-piece transfer trajectory:
the thick blue curve corresponds to the first arc and is a solution of
the Sun–Earth–Sc CR3BP, while the black curve corresponds to the
second arc and is a solution of the Earth–Moon–Sc CR3BP. Ad-
ditionally, Fig. 1(b) shows the second arc projected onto position
space in EM synodic coordinates.

The two pieces are connected at two states that share the same
location in position space, but may have different velocities. To
obtain a transfer solution it is useful to define a Poincaré section in
the SE synodic frame where the involved manifolds intersect. For
concreteness, consider the Poincaré section Σc defined by

μ= − + ̇ > <X X Y1 , 0, 0SE . Σc rotates around the Earth in the EM
synodic frame, so at the patching instant, Σc corresponds to a
section Σ ⁎

c in the EM system.
In Σc , the patching states are simultaneously outside the cut of

Table 1
Critical values of the Jacobi constant in the first and the second Lagrangian points of
the SE and the EM systems.

C Sun–Earth Earth–Moon

C1 3.0009000935260 3.2003449098321
C2 3.0008960456047 3.0241502628815
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