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a b s t r a c t

Surface stress and surface inertia effects may play a significant role in the mechanical
characteristics of nanostructures with a high surface to volume ratio. The objective of this
study is to present a comprehensive study on the surface stress and surface inertia effects
on the large amplitude periodic forced vibration of first-order shear deformable rectan-
gular nanoplates. To this end, the Gurtin–Murdoch theory, first-order shear deformation
theory (FSDT) and Hamilton's principle are employed to develop a non-classical con-
tinuum plate model capable of taking the surface stress and surface inertia effects and also
the rotary and in-plane inertias into account. To solve numerically the geometrically
nonlinear forced vibration of nanoplates with different boundary conditions, the gen-
eralized differential quadrature (GDQ) method, numerical Galerkin scheme, periodic time
differential operators and pseudo arc-length continuation method are employed. The
effects of parameters such as thickness, surface residual stress, surface elasticity, surface
mass density, length-to-thickness ratio, width-to-thickness ratio and boundary conditions
on the nonlinear forced vibration of rectangular nanoplates are fully investigated. The
results demonstrate that surface effects on the nonlinear frequency response of aluminum
(Al) nanoplate are more prominent in comparison with the silicon (Si) nanoplate.

& 2015 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The rapid advances in nanoscience and nanotechnology
have led to the rapidly developments in fabrication of
Nano- and Micro- Electro-Mechanical Systems (NEMS and
MEMS) in recent years, due to their superior mechanical
and physical properties. Such small-size structures have
been widely utilized in many fields, namely optics, aero-
space technology, electronics, chemistry, mechanical
engineering and biomedical engineering [1–3]. Nanowire,
nanobeam, nanoplate and nanoshell are the elementary

building blocks in MEMS and NEMS. In order to design,
fabricate and develop such nanostructures, it is necessary
to study all crucial characteristics of their mechanical
behaviors. Therefore, a variety of studies have been carried
out on the prediction of mechanical characteristics of
nanostructures [4–13]. For example, Ansari et al. [14]
presented a size-dependent Timoshenko beam model on
the basis of surface stress elasticity theory to study the
surface effects on the geometrically nonlinear forced
vibration characteristics of nanobeams with various edge
conditions. Setoodeh et al. [15] developed a nonlocal
Mindlin plate model to investigate the geometrically
nonlinear vibration of orthotropic graphene sheets.
Moreover, Shen et al. [16] examined the nonlinear vibra-
tion of bilayer graphene sheets in thermal environments
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employing the molecular dynamics simulations and non-
local elasticity.

Some atomistic and molecular dynamics simulations
and experimental studies have demonstrated that the
mechanical characteristics of nano- and micro- structures
are size-dependent and behave in a different way from
their macroscale counterparts [17–20]. On the other hand,
the classical continuum mechanic is not able to predict
and explore the size-dependent mechanical characteristics
of structures at micro- and nano-scales. Therefore, several
investigations have been performed to develop the non-
classical continuum theories such as nonlocal elasticity
[21], strain gradient elasticity theory [22], modified strain
gradient elasticity [19], modified couple stress theory [23]
and surface stress elasticity theory [24,25] which are
capable of incorporating the size-effects into account.
Among different non-classical continuum theories, the
surface stress elasticity theory has been adopted in many
investigations to investigate the effects of surface stress
and surface inertias on the mechanical behavior of
nanostructures. The surface stress effect is particularly
important in nano-scaled solids or structures with high
surface-to-volume ratios. Moreover, the positive/negative
surface stresses lead to inducing a compressive/tension
residual stress fields in bulk part of nanostructures,
respectively [25–27]. The compressive residual stress fields
may be leads to a self-instability in the nanostructures
even in the absence of external mechanical loadings [28].
Therefore, to avoid the self-instability of nanostructures,
the critical size of nanostructures should be determined.

A very elegant mathematical formulation within the
framework of continuum mechanics was developed by
Gurtin and Murdoch [24,25] to include the surface stress
and interfacial energy into classical continuum theories.
On the basis of proposed model, the surface surfaces are
simulated as layers with zero thickness and different
material properties from the bulk layer. Later, various
researchers developed the size-dependent nanobeam,
nanoplate and nanoshell models incorporating the surface
stress effects to predict the static and dynamic mechanical
behaviors of nanostructures [28–33]. For example, Wang
and Feng [34] presented a size-dependent Timoshenko
beam model to study the surface effects on the axial
buckling and the transverse vibration of nanowires. They
included that the positive surface elastic constants lead to
an increase in the critical buckling loads and natural fre-
quencies. Assadi and Farshi [35] modified the classical
Kirchhoff's circular plate model to include the effects of
surface properties on the vibration characteristics of cir-
cular nanoplates. It observed that surface stress effect on
the natural frequencies and mode shapes is more promi-
nent in larger and thinner circular nanoplates. Ansari et al.
[36] developed a non-classical circular plate model to
investigate the vibrational response of circular nanoplates
considering surface energies. Based on the Kirchhoff plate
theory, Hasheminejad and Gheshlaghi [37] adopted a dis-
sipative surface stress model to illustrate the surface dis-
sipation effect on the quality factor and natural fre-
quencies of elastic nanofilms. Utilizing a nonclassical
geometrically nonlinear beam model on the basis of the
Euler–Bernoulli theory, Wang and Wang [38] performed a

study on the non-linear pull-in instability of nano-
switches and discovered that surface energy effects on
the pull-in voltage depends on the geometric parameters
such as length, height and initial gap of the nano-switch.
Ansari et al. [39] examined the surface effects on the free
vibration characteristics of circular nanoplates in the vici-
nity of postbuckling domain based on a newly developed
nonlinear circular Mindlin nanoplate model and numerical
solution procedure.

To the authors' knowledge, the surface stress and sur-
face inertia effects on the geometrically nonlinear forced
vibration of nanoplates have not been investigated.
Moreover, the influences of the transverse shear defor-
mation and rotary inertia become more prominent for the
thick and moderately thick nanoplates. Therefore, in this
paper, a non-classical first-order shear deformable rec-
tangular plate model is developed on the basis of Gurtin–
Murdoch theory using a variational procedure. The new
developed plate model incorporates the surface stress and
surface inertia effects and can capture the small-scale
effect, unlike the classical first-order shear deformable
plate model. The newly developed non-classical plate
model is employed to investigate the nonlinear forced
vibration of nanoplates with various boundary conditions
employing the generalized differential quadrature (GDQ)
method, numerical Galerkin scheme, periodic time differ-
ential operators and pseudo arc-length continuation
method.

The rest of the paper is organized as follows. In Section
2, a new non-classical model for a first-order shear
deformable plate is developed on the basis of Gurtin–
Murdoch theory, Hamilton’s principle and a variational
approach. Also, by defining the appropriate non-
dimensional parameters the governing equations are
expressed in the non-dimensional form. In Section 3, the
geometrically nonlinear forced vibration problem of a
rectangular nanoplate is numerically solved by means of
the GDQ method, numerical Galerkin scheme, periodic
time differential operators and pseudo arc-length con-
tinuation method. In Section 4, the numerical results are
presented to quantitatively show the effect of parameters
such as thickness, surface residual stress, surface mass
density and boundary condition on the large amplitude
periodic forced vibration of rectangular nanoplates. Also,
the differences between the results given by the current
non-classical plate model and classical counterpart are
shown. The concluding remarks are given in Section 5.

2. Mathematical formulation of governing equations
and boundary conditions

As shown in Fig. 1, consider a uniform rectangular
nanoplate with length a, width b and thickness h subjected
to a harmonic excitation transverse force FðtÞ. Introducing
the Cartesian coordinate system on the middle-plane of
nanoplate, the upper z¼ h

2

� �
and lower z¼ �h

2

� �
surface

layers are symbolized by Sþ and S� , respectively.
According to the first-order shear deformation theory
(FSDT), the components of displacement field ðux;uy;uzÞ of
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