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a b s t r a c t

In this paper, kinematics equations of attitude parameters are derived for cases where the
Euler rotation theorem cannot be applied and the single rotation that takes an initial
reference frame to a target reference frame cannot be performed. It is the case when the
nominal rotation is not allowed along a prescribed direction in space, namely an
“underactuation” direction. As a matter of fact, a non-nominal maneuver planning
scheme, expressed in terms of Euler axis/angle parameters, is admitted for the minimiza-
tion of the alignment error between the target and the attainable attitude. The derivation
of kinematic equations, describing the time evolution of non-nominal rotation para-
meters, is performed by means of rigorous algebraic manipulations within a unified
framework, where the underactuation direction is prescribed in either the moving frame
or the target frame.

& 2015 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Euler axis/angle representation is a widely used tech-
nique in rigid body attitude control problems. It allows the
visualization of the nominal rotation which takes a rotat-
ing reference frame (e.g., a body-fixed frame) to a target
reference frame by means of the minimum angular path
[1]. There are cases where there exists a direction, along
the unit vector b̂, about which rotations are not allowed,
making the desired Euler transformation about the nom-
inal axis ê not attainable. Nonetheless, under such under-
actuated conditions, rotations about non-nominal axes,
lying on the plane orthogonal to b̂, can be performed.

In [2] one of the authors provided an exact analytical
expression allowing to compute the rotation angle, ϕ̂,
about the instantaneous non-nominal rotation axis,

ĝ ¼ b̂ � ê= b̂ � ê
��� ���� �

� b̂, which minimizes the alignment
error between the target and the attainable attitude. More
recently, Avanzini and Giulietti [3] also demonstrated that
it is always possible to determine a non-nominal Euler
axis/angle rotation driving a single axis of the rotating
frame to be aligned with a prescribed direction in space.

The present study, based on the conference paper in
[4], is aimed to complete the kinematic framework of Euler
axis/angle representation in the presence of constraints on
the direction of admissible rotation axes. Kinematic equa-
tions, describing the time evolution of non-nominal rota-
tion parameters in the case when the overall misalignment
error is minimized, are derived. A novel approach is
presented allowing a generalized solution to the problem
of underactuation when the torqueless direction is con-
stant in either the target or the body frame. Examples of
suitable applications of the proposed approach may be
found in microsatellite platforms. In case of magnetic
attitude control, the body-referenced available control
torque is always perpendicular to the external magnetic
field (whose direction is supposed to be fixed in space in
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short timescales) and to the onboard-generated magnetic
dipole. This makes the system inherently underactuated,
with the inability to provide three independent control
torques at each time instant [5]. On the other hand, the
spacecraft can become underactuated after a failure in a
minimal control system or multiple failures in a redundant
one (i.e., after the loss of a reaction wheel in a three-axes
stabilized spacecraft with no redundancy [6]). In these
cases, the application of well known control strategies is
no longer possible for both regulation and tracking, and
new methods have been proposed for tackling this parti-
cular problem [7]. In this respect, the present work
addresses a unified framework of mathematical tools
suitable for dealing with underactuation directions both
fixed in space and in the body-fixed frame. Three-axis
control system design where the non-nominal Euler axis ĝ
and the relative rotation angle ϕ̂ are used as feedback
terms represent a suitable application.

In what follows a brief overview about nominal Euler
axis/angle representation is provided in the first part of
Problem Formulation Section, while the non-nominal
rotation planning scheme is introduced in the second
one. The derivation of kinematic equations for the non-
nominal rotation is then analyzed for the two cases in
which the torqueless direction b̂ is a constant in the
rotating and the target frame, respectively. A section of
concluding remarks ends the paper.

2. Problem formulation

2.1. Nominal Euler axis/angle rotation

Define two arbitrary Cartesian coordinate frames: a
rotating reference frame, F1, and a target reference frame,
F2. Let T12AR3�3 represent the rotation matrix that allows
for the transformation

v1 ¼T12v2 ð1Þ

where v1 and v2 represent a generic vector expressed in F1
and F2, respectively. Suppose that the desired attitude is
achieved when F1 is aligned with the target frame F2.
According to Euler's Theorem, this can be obtained by a
single rotation of the frame F1 about an axis referred to as
the Euler axis (or rotation eigenaxis), whose components
do not depend on the particular reference frame (F1 or F2).
In what follows, all vector components will be expressed
in F1, unless noted otherwise.

Let êAR3 represent the Euler axis unit vector and let
ϕA ð0;πÞ represent the Euler angle of rotation about the
Euler axis. Euler axis and angle can be expressed as a
function of the rotation matrix as follows [8]:

cos ϕ¼ 1
2 tr T12ð Þ�1½ � ð2Þ

ê� ¼ 1
2 sin ϕ

TT
12�T12

� � ð3Þ

where tr T12ð Þ is the trace of T12 and ê� is the skew
symmetric cross-product operator

ê� ¼
0 �e3 e2
e3 0 �e1
�e2 e1 0

2
64

3
75 ð4Þ

related to the vector components of ê. On the converse, the
reciprocal equations lead to an expression of the rotation
matrix in terms of Euler axis/angle:

T12 ¼ I3� sin ϕ ê�þ 1� cos ϕ
� �

ê�ê� ð5Þ
provided I3 is the 3�3 unit matrix.

The kinematics of Euler axis/angle representation when
the angular velocity is known is provided. Letω21AR3 be the
angular velocity of F1 relative to F2, expressed in F1. It is [9]

_ϕ ¼ ê �ω21 ð6Þ
where ê �ω21 is the scalar product between ê and ω21, and

_̂e ¼ 1
2

ê��cot
ϕ
2

� �
ê�ê�

	 

ω21 ð7Þ

2.2. Non-nominal Euler axis/angle rotation

Given a generic attitude achievable by a rotation
ϕa0;π about the eigenaxis ê (the two cases ϕ¼ 0;π
represent singularities in the Euler's Theorem, see Eq.
(3), and therefore must be excluded), there could be cases
where the desired rotation Rdes ê;ϕ

� �
cannot be per-

formed. Let ĝAR3 be a unit vector not aligned to the Euler
axis ê: a rotation about ĝ by the angle ϕwould take F1 to a
frame F3 which is not aligned to the target frame F2.

In [2] an analytical expression was derived for the
particular rotation angle ϕ̂A ½0;πÞ, about a generic axis ĝ
not aligned to ê, which minimizes the alignment error ϵ
between the target frame F2 and the attainable frame F3
(see Fig. 1). In particular, it was proven that [2,10]

tan
ϕ̂
2

 !
¼ ê � ĝ� �

tan
ϕ
2

� �
ð8Þ

If, in addition, the rotations are constrained on a plane
orthogonal to a unit vector b̂AR3, it was shown how the
best admissible rotation Rðĝ ; ϕ̂Þ leading to the minimum
misalignment error, ϵ¼ ϵðb̂;T12Þ, is obtained when the

Fig. 1. Definition of desired and admissible rotations.
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