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a b s t r a c t

An analytical approach to study of attitude determination algorithms is considered. The
approach is applicable for quasi-stationary motion determination. It is based on filter
post-convergence computation of the Kalman filter covariance matrix and allows one to
estimate the influence of unaccounted perturbations on motion determination accuracy.
The dependence of attitude determination accuracy on filter parameters and perturba-
tions is obtained. The proposed method of improving the Kalman filter performance is
applied on board a microsatellite of the TabletSat series.

& 2015 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Microsatellites are now widely used for Earth observa-
tion [1,2] and scientific missions [3]. They are also con-
sidered promising for interplanetary flights [4,5]. Use of
attitude control systems is crucial for most of the micro-
satellite missions. One of the main issues is a problem of
estimating the attitude motion state vector. It is often
required in real time. The state vector is determined by
processing attitude sensors measurements by the onboard
computer which has computational constraints due to the
power limitation. This problem is commonly solved using
recursive algorithms based on the Kalman filter.

The most frequently used microsatellite attitude deter-
mination sensors are star sensors [6,7], sun sensors [8],
gyros [9,10] and magnetometers [11,12]. Each type of
sensors has its strengths and shortcomings which deter-
mine its choice in specific attitude motion modes. For
example, star sensors are considered to be the most
accurate but they are to be used only at small angular

velocities and when the Sun is out of the field of view. Sun
sensors are completely useless on the shaded part of the
orbit. A magnetometer can only be exploited in low-Earth
orbits and its measurements are disturbed by the proper
magnetic field of a microsatellite. An angular velocity sensor
requires real-time calibration because of the changing bias.
Thus, it is reasonable to use all types of sensors and to
process the most reliable (under current conditions) mea-
surements. The most common set of microsatellite sensors
includes a sun sensor, a magnetometer and an angular
velocity sensor. The sun sensor and magnetometer mea-
surements should be processed on the sunlit part of the
orbit while the angular velocity sensor undergoes calibra-
tion. Then the magnetometer and the calibrated angular
velocity sensor are used on the shaded part [3]. Micro-
satellite attitude determination and control system (ADCS)
should therefore contain a set of different attitude determi-
nation algorithms for estimating the attitude state vector.

The Kalman filter uses the linearized satellite attitude
motion equations and sensor measurements to estimate
the state vector by the mean-square criterion. Due to
computational constraints, the motion equations cannot
include all perturbations acting on a satellite. The attitude
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determination accuracy decreases as unaccounted pertur-
bations influence grows. Selection of motion model error
and measurement noise statistics, commonly known as
filter tuning, is a critical issue for the Kalman filter. In the
recent paper [13], we presented an overview of Kalman
filter tuning methods and proposed an analytical approach
to study the filter performance. This approach is applicable
for quasi-stationary motion analysis. In the present paper,
we develop the latter work [13] and apply the approach to
study the algorithms based on the readings of a star
sensor, a sun sensor, a magnetometer and an angular
velocity sensor. The primary purposes of the paper are
the analytical study and comparison of the attainable
accuracy of attitude determination algorithms based on
the measurements of various sensors sets. The parameters
of ADCS sensors of TabletSat microsatellite series1 are
considered as an example.

2. Kalman filter tuning technique

2.1. Extended Kalman filter

First, consider briefly the well-known extended Kalman
filter algorithm [14,15]. Assume the satellite motion model
to be nonlinear

dx
dt

¼ fðx; tÞþq ð1Þ

where x is a state vector, f is a nonlinear function, q is a
normally distributed dynamical noise with the error cov-
ariance matrix Q. Prediction of the state vector estimation
x̂�
kþ1 (a priori) at the moment of time tkþ1 is calculated by

integration of nonlinear Eq. (1) (without q vector) using
the state vector x̂þ

k at previous time step tk. Discrete
Riccatti equation is used to obtain prediction of the error
covariance matrix vector estimation P�

kþ1 at time tkþ1,

P�
kþ1 ¼ФkP

þ
k Ф

T
k þQ ; ð2Þ

where Фk is a transition matrix between the states xk and
xkþ1 which is calculated by linearizing Eq. (1) in the
neighborhood of x̂�

k , Pþ
k is an error covariance matrix at tk.

A posteriori estimation is a priori estimation corrected
by the measurements sample. In general case, the
measurement vector z depends nonlinearly on the state
vector x,

zkþ1 ¼ hðx�
kþ1; tkþ1Þþr: ð3Þ

Here h is a nonlinear function, r is a measurement noise
vector with the covariance matrix R. The gain matrix Kk

can be written as

Kkþ1 ¼ P�
kþ1H

T
kþ1½Hkþ1P

�
kþ1H

T
kþ1þR��1 ð4Þ

where Hkþ1 is a sensitivity matrix calculated by linear-
izingmeasurement model (3) in the neighborhood of x̂�

k .
The corrected (a posteriori) estimation xþ

kþ1 of the

Kalman filter has the form

xþ
kþ1 ¼ x�

kþ1þKkþ1½zkþ1�hðx�
kþ1; tkÞ�:

A posteriori estimation for the error matrix is given by
the formula

Pþ
kþ1 ¼ ½E�Kkþ1Hkþ1�P�

kþ1

where E is an identity matrix.

2.2. Accuracy estimation in quasi-stationary motion

The Kalman filter covariance matrix of errors P is a
qualitative criterion of the state vector estimation. If the
matrix Pk at time tk is known, one can estimate the
accuracy of determining the state vector x̂k. However, the
value of Pk depends on a number of factors like the initial
state vector x0, initial value Р0, covariance matrix of
motion model error Q , measurement errors R, system
dynamics. In addition, the motion equation used by the
Kalman filter does not include disturbance torques with
complex mathematical model because it is rather difficult
to implement it to on-board computer. Usually, the influ-
ence of unaccounted perturbation on accuracy is investi-
gated by simulation of the Kalman filter work. In this
approach, computing takes a lot of time and its results are
correct only with a certain probability.

Consider another approach to Kalman filter tuning. If
the satellite attitude motion is sufficiently slow (or the
measurement sampling frequency is high enough), we
consider it as quasi-stationary. Consider the motion as
quasi-stationary when the acting forces and the measure-
ment model are nearly a constant in the time between
consecutive measurements, i.e. Фk ¼ФCconst, Hk ¼HC
const. For the discrete extended Kalman filter, one can
calculate the covariance error matrix Р1 after conver-
gence. Hence, the filter performance quality after transient
process is studied. The matrices at two consecutive steps
should be equal:

Р1 ¼ Pk ¼ Pk�1:

Therefore, the following matrix equation

Р1 ¼ ½E�ðФР1ФT þQÞHT ½HðФР1ФT þQ ÞHT þR��1H�ðФР1ФT þQ Þ
ð5Þ

is valid. Note that all the matrices in this equation are
considered to be constant. Taking into account that matrix
Р1 is symmetric, the considered nonlinear matrix equa-
tion can be rewritten as nonlinear equations with n
unknown variables (i.e., the elements of matrix Р1). These
equations can be solved numerically, for example, by
Newton's method.

2.3. Dependence of estimation accuracy on unaccounted
perturbations

Let us consider how disturbances affect the estimation
accuracy. The Kalman filter is developed for the linear
motion and linear measurement models (or for the linear-
ized ones) as follows

xkþ1 ¼Фkxkþwk; ð6Þ

1 SputniX Ltd technological satellites, the first one has been success-
fully launched on June 20, 2014 as a piggyback payload of the Dnepr
rocket)
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