
Uniform rotations of tethered system connected to a
moon surface

Alexander A. Burov a,b, Anna D. Guerman c,n, Ivan I. Kosenko d

a National Research University Higher School of Economics, Myasnitskaya 20, 101000 Moscow, Russia
b Department of Mechanics, Dorodnicyn Computing center of the RAS, Vavilova 40, 119333 Moscow, Russia
c C-MAST: Centre for Mechanical and Aerospace Science and Technologies, University of Beira Interior, Calcada Fonte do Lameiro,
6201-001 Covilha, Portugal
d Department of Mechanics, Dorodnicyn Computing center of the RAS, Vavilova 40, 119333 Moscow, Russia

a r t i c l e i n f o

Article history:
Received 9 July 2014
Received in revised form
17 April 2015
Accepted 12 May 2015
Available online 19 May 2015

Keywords:
Tether system
Moon elevator
Uniform rotations
Tether orientation control
Moon exploration
Asteroid exploration

a b s t r a c t

We consider the problem of in-plane rotations of a space elevator with variable tether
length attached to a surface of one of the primaries in a double system. The planet and its
moon (or two asteroids) move about their center of mass in unperturbed elliptic Keplerian
orbits. We discuss the possibilities to cause a prescribed motion of the system by changing
the tether's length. Periodic solutions of the equation for the tether length control are
studied using the method of small parameter. The stability of these solutions is studied
numerically. The analysis shows that there exists a control law that implements tether
rotations which are uniform with respect to true anomaly; one can indicate conditions
when the above rotations are stable in the first approximation. These results can be used
for the development of a planet elevator or a system for payload transportation to and
from asteroid surface.

& 2015 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Use of tethers for space transportation is currently dis-
cussed in several research groups and agencies. Tethers pro-
vide promising possibilities for orbital and attitude spacecraft
control, distributed spacecraft missions, space debris removal,
etc. [1,2]. One of the possible applications for space tethers is a
space elevator. The project of building a space elevator at the
Earth, though much awaited by numerous fans, still faces
serious difficulties. Meanwhile, similar systems for Moon,
Mars, or asteroid exploration look much more feasible.

Studies of spacecraft tethered to the Moon surface began
long ago [3,4]. Several authors discuss possible applications of
such structure for lunar exploration [1,2]. Recently some

results on equilibria of such spacecraft and their stability have
been obtained in [5–7].

Research on systems with variable mass distribution arises
probably to [8–10] and to dissertation of V.A. Sarychev1 (see
also [11]). Analysis of the necessary conditions of stability for
relative equilibria of a satellite with variable mass distribution
has been done in [12], some of these results have been re-
discovered in [13,14] (see also, e.g., [15]).

Various aspects of dynamics of orbital tethered system
have been studied in [16–20]. Parametric analysis of orbiting
tethers is performed in [21]. Dynamics of tethered systems in
the vicinity of libration points is analyzed in [5,22]. Motions of
a multi-tether system are considered in [23–30].

In [7,31–33] we consider dynamics of a tether anchored
to the Moon surface and the possibilities to keep its
orientation with respect to the Earth–Moon direction
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despite the eccentricity of the Moon orbit. A proper control
of the tether's length can keep the fixed orientation of the
tether for several modes of the system functioning. The
results of [7,31,32] can be applied for other systems of two
primaries, e.g., for planet's satellites or binary asteroids
whenever the point of the tether's attachment maintains
its orientation with respect to the other primary.

Meanwhile, the above results are only applicable for
systems, where the moon's proper rotation is synchronized
with its orbit motion so as the position of the tether's anchor
is fixed with respect to the planet–moon direction. Relative
rotation of the moon's surface requires that the tether follow
the motion of the anchor. Here we examine the possibility to
create a proper rotation of the tether via control of its length.

2. Posing the problem

Consider a system of two primaries, e.g., a planet E and
a moon M, that move about their center of mass O in
elliptic Keplerian orbits:

OM
��! ¼ r¼ pM

1þe cosν
; OE

�! ¼ μr¼ pE
1þe cosν

; μ¼mM

mE
:

����
����

����
����

ð1Þ
Here mE and mM are the masses of the planet and the moon
respectively, pE and pM are parameters of their orbits, e is the
eccentricity, and ν is the true anomaly. We assume that the
sizes of the primaries are negligible. Fig. 1 shows the plane of
the primaries’ orbits π. The spacecraft of mass m is connected
to the moon surface by a tether which length can be changed
according to some control law. Only in-plane motions of the
tether are considered; the tether orientation is described by
angle φ (Fig. 1).

For in-plane motion of the tethered spacecraft its kinetic
energy can be written as T ¼ ðm=2Þ _x2S þ _y2

S

� �
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2
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Its potential energy is

U ¼ �Gm
mE

rE
þmM

ℓ

� 	
: ð3Þ

Here G is the universal gravitational constant,

rE ¼ jSEj ¼ ρ2þ2ρℓ cosφþℓ2� �1=2
is the distance between the planet and the spacecraft, and
ρ¼ jEMj ¼ ð1þμÞr is the distance between the planet and the
moon. Assuming that ν, r, and ℓ are given as functions of time,
one can write down the Lagrangian equations

d
dt

∂L
∂ _φ

¼ ∂L
∂φ

; L¼ T�U: ð4Þ

Introducing the true anomaly as a new independent
variable and denoting by strike the respective derivative

d
dt

¼ _ν
d
dν

¼ωð1þe cosνÞÞ2 d
dν

; ð5Þ

whereω2 ¼ GmE=ð1þμÞ2p3M , the equation of motion can be
rewritten as

ℓφ″þ2ℓ0 1þφ0� ��2eℓ 1þφ0� �
sinν

1þe cosν
þ

þ pM sinφ
ð1þe cosνÞ2

1�ð1þμÞ3p3M
f 3=2

" #
¼ 0;

f ¼ ℓ2ð1þe cosνÞ2þð1þμÞ2p2M
þ2ℓð1þμÞpM cosφð1þe cosνÞ: ð6Þ
It is possible to consider Eqs. (6) from two different

perspectives. In the framework of the direct problem, one
can look for the system's motions that correspond to a specific
variation of the tether length; in this case ℓ¼ ℓðνÞ is given
and one has to study the second order ordinary differential
equation for φðνÞ. Considering the inverse problem, one can
find the control law for the tether length ℓ¼ ℓðνÞ that results
in a specific variation of the tether orientation; in this case
φ¼φðνÞ is defined beforehand and one has to find ℓ¼ ℓðνÞ
analyzing the first-order differential equation (6). Here we
examine the possibility to implement rotations of the tether,
which are uniform with respect to the true anomaly. First we
consider the inverse problem and find the control law ℓ¼
ℓðνÞ that causes such motions. Afterwards we analyze the
direct problem and find the necessary conditions of stability
for the above rotations. Similar problem regarding existence
and stability of rotations of a tethered system has been stu-
died in [34].

3. Forces in tether with variable length

Consider the Lagrangian

Λðφ;ℓ; _φ; _ℓÞ ¼ T�U; ð7Þ
Here r and ν are given functions of time t. The equations of
motion are

d
dt

∂Λ
∂ _φ

¼ ∂Λ
∂φ

;
d
dt

∂Λ
∂ _ℓ

¼ ∂Λ
∂ℓ

þFℓ; ð8Þ

where Fℓ is the generalized force correspondent to the
coordinate ℓ. Since

∂Λ
∂ _ℓ

¼m _ℓþ _r cosφþ _νr sinφ
� �

;

∂Λ
∂ℓ
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� �

Fig. 1. Main notations.
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