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a b s t r a c t

The aim of the present study is to investigate problems of numerical simulations precision
and stochastic errors accumulation in solving problems of detonation or deflagration
combustion of gas mixtures in rocket engines. Computational models for parallel com-
puting on supercomputers incorporating CPU and GPU units were tested and verified.
Investigation of the influence of computational grid size on simulation precision and
computational speed was performed. Investigation of accumulation of errors for simula-
tions implying different strategies of computation were performed.

& 2015 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Detonation combustion mode has definite exceptional
properties as compared with classical deflagration mode
used in modern engines. Those differences are: extra-
ordinary higher rates of flame propagation (four orders of
magnitude higher), higher pressure and temperature
values in reaction zone, minimal entropy production for
Chapman–Jouguet regime. Unsteady-state transition pro-
cesses between two combustion modes are possible.
Uncontrolled detonation onset in engines could be an
explosion hazard. That is one reason numerical simula-
tions and predictive modeling of detonation onset are
necessary for providing safety regulations. On the other
hand control of detonation onset is necessary in perspec-
tive pulse detonation engines, which are under develop-
ment now [1–7]. In our numerical studies we’ll take
hydrogen fuel as an example. The advantages of a constant

volume combustion cycle as compared with constant
pressure combustion in terms of thermodynamic effi-
ciency has focused the search for advanced propulsion on
detonation engines [8,9]. Numerical simulations of pulse
detonation engines operation aimed at increasing their
efficiency and developing control strategies consume
much time and computational resources. Parallel com-
puting technologies and developing effective schemes
aims at reducing the simulation time. The thermodynamic
efficiency of Chapman–Jouguet detonation as compared
with slow combustion modes is due to the minimal
entropy of the exhaust jet [1]. Extensive numerical mul-
tidimensional simulations of detonation onset and propa-
gation are necessary in combustion chambers able to dis-
tinguish optimal scheme for the operation cycle. Parallel
computing is a powerful tool enabling to make simulations
more effective and less time consuming. However solving
numerical problems it is necessary to control accumula-
tion of numerical error. For fine grid simulations of
unsteady-state processesnumerical time step is being
chosen based on Courant criterion, which makes it also
small. Thus the number of time steps could be enormous.
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Keeping in mind that each time step contributes to accu-
mulation of numerical error, the number of time steps
should be limited so as the accumulated error did no
exceed 100%.

The aim of the present study is developing mathema-
tical model for evaluation of stochastic numerical errors
accumulation in multistep simulations of chemically
reacting gas dynamic processes in rocket and detonation
engines. Effectiveness of different numerical schemesand
its parallelization potential for supercomputing will be
also investigated. The role of supercomputer architecture
will be discussed.

2. Mathematical model

2.1. Equations

In order to calculate multicomponent gas dynamics
with chemical reactions excluding transport phenomena
effects and considering external mass and energy sources
we use the following set of simultaneous equations:
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In Eqs. (1)–(3) index k takes values N1 c… (number of
components) and indices i, j – values 1, 2, 3 (number of
dimensions); repeated indices presume summation. In
total there are N 4c + differential equations in the set.

2.2. Algebraic relations

Differential Eqs. (1)–(3) are to be complemented with
three algebraic relations and algebraic representations for
chemical and mass and energy sources. First three rela-
tions will look like:
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Relations (4) define gas density ρ, pressure p and internal
energy per unit volume E of mixture respectively. Other
definitions are: RG is universal gas constant, Wk is molar
weight of a component, and for temperature functions –

H Tk
^ ( ) is dimensionless enthalpy of a component encom-
passing enthalpy of formation at given temperature Tref

(“chemical energy”). More precisely the conception of
dimensionless thermodynamic data is given in Ref. [1]. As
these expressions show, in algebraic expressions here and in
what follows it is often convenient to use molar density Xk

(which sometimes, especially in chemical literature, is called
"concentration") instead of partial component density kρ :
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Mass source kω̇ is due to chemical interactions present
in the system of gases. Mass source Mk

̇ results from the
external source outcome. Source Q k

̇ in energy equation is a
total income of. energy carried with the external mass Mk

̇ ;
source Q̇ in energy equation denotes extra energy income
from the external source. Thermal energy source implying
chemical reactions inside the system is absent in this
model because energy E already encompasses chemical
energy of each component. External sources are not
directly linked chemical interactions inside the system;
they aim to inject mass and energy in gas mixture from the
outside for ignition and movement excitation. In our pro-
blem setup they explicitly depend on time and location.

Chemical sources kω̇ for most systems take a compli-
cated form; they can be expressed depending on tem-
perature T and set of the molar densities XX k= { }; sum of
these sources equals zero due to the law of mass con-
servation in chemical reactions:
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There also exist more precise laws of chemical inter-
actions (law of mass conservation for each element),
which are taken into account in kinetic mechanism and
can be considered in numerical realization of the model
for calculation simplification and precision improvement.
General form of chemical sources is quite complicated and
includes members which are nonlinear for each argument;
the common view is
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where rω is speed (intensity) of reaction r , r k,ν is an
algebraic stoichiometric coefficient of a component k in
reaction r , Mr is a third bodies influence coefficient (those
which do not change) in the reaction r , which equals
1 when this influence is absent, kF r, is a speed coefficient of
a forward reaction, usually depending solely on tempera-
ture, but for some (“out-of-order”) reactions also of Mr , kB r,
is a speed coefficient of the backward reaction, r j,α are
powers of components in the forward reaction (usually,
but not always nonzero only for incoming components) r j,β
are powers of components in the backward reaction.

Dependencies H Tk
^ ( ) are often expressed as polynomials

with different coefficients for different components [10].
In practice Eq. (1) can be used transformed to the fol-

lowing view:
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