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a b s t r a c t

We confront stability results over long time scales, considering alternately the averaged
and the non-averaged theory to propagate the equations of motion of a celestial body
orbiting the vicinity of the (2:1) tesseral resonant surface. This confrontation is performed
using Fast Lyapunov Indicator stability maps. The benefit of such maps is threefold: (i) to
reveal the whole phase space architecture and the consequences of the resonance overlap
when several combinations of tesseral resonant parameters are accounted for, (ii) to
perform a stability analysis on a whole phase space region, and (iii) to have a clear view of
the possible impacts of the short-periodic effects removed during the averaging proce-
dure. Our detailed numerical investigations conclude that the tesseral chaos is robust to
the averaging procedure and the numerical methods used to propagate the equations of
motion over such long time scales.

& 2015 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The averaging principle or averaging method has seen a lot
of improvements, mathematical justifications and rigorous
developments [1] since its heuristic introduction by Lagrange
in celestial mechanics and Van der Pol's works in mechanics.
This perturbative method treats differential systems contain-
ing a small parameter which calibrates the perturbation's
size of the original and non-perturbed system which is
supposed to be integrable. Given a perturbed differential
system, often written in the standard perturbative form [2] as

_x ¼ ϵXðx; y; ϵÞ
_y ¼ωðxÞþϵYðx; y; ϵÞ;

(
ð1Þ

where xARn stands for the slow variables and yATk the fast
variables, ϵ{1, X and Y are 2π-periodic functions in y and

are supposed to be analytic, the aim of the averaging method
is to find new coordinates ðx; yÞ in Rn � Tk such that the
slow and the fast variables are separated. The solution reads
as a power series of the small parameter ϵ:

_x ¼ ϵA1ðxÞþϵ2A2ðxÞþ⋯
_y ¼ωðxÞþϵB1ðxÞþϵ2B2ðxÞþ⋯

:

(

When the previous calculus are performed at order 1 in ϵ,
the term A1 is the spatial average over the torus of the
function X [2]. This method has been applied with success in
spatial dynamics to define variables ðx; yÞ free of short-
periodic terms1 but containing all the original long-periodic
information. Due to the elimination of the short-periodic
terms, the averaged equations of motion can been propa-
gated numerically with a large step size (to the order of one
day), several orders larger than those typically used when
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propagating the osculating motion, which is in practice very
useful for long-term-analysis or long-term ephemeris.

If the first order averaged semi-analytical theory has
already shown its capability in terms of orbit propagation
accuracy when compared to the results of an osculating prop-
agation [3], the compatibility problem between a stability
analysis performed with the averaged or non-averaged
equations has, to the best of our knowledge, never been addr-
essed and is still an open problem, especially in the vicinity of
resonant surfaces. This question is, from a dynamical and
theoretical point of view, crucial and states the general
problem of the short-periodic effects removed during the
averaging procedure on long-term analysis. Consequently, we
state here the question of the existence of the following,
ideally commutative, diagram:

By xt0 and xt0 we denote the osculating and the correspond-
ing mean initial state vectors at initial time t0. These state
vectors are propagated, following a numerical or semi-
analytical approach, up to a final time tf. By λt and ρt we
refer to a numerical stability indicator associated with the
proposed orbit. The main object of this paper is to study to
what extent, or not, there is a compatibility and eventual
link between the results of the stability analysis between
x; λ

� �
t and x;ρ

� �
t .

In this paper we examine the general problem applied to
the (2:1) tesseral resonant motion, where GPS satellites are
positioned. At this location, the orbital period is approxi-
mately equal to 12 h, half the rotational period of the Earth,
leading to a resonant configuration.

The paper is organized as follows: In Section 2 we sum-
marize the Hamiltonian part modeling the problem, and
present the averaged Hamiltonian used for long-term motion
study. The Hamiltonian is a 2 degree of freedom (hereafter
noted DOF) Hamiltonian from which emerges chaos. The
route to chaos is described by Chirikov's resonance overlap. In
Section 3, we present the main results of the current work:
the Fast Lyapunov Indicator (hereafter noted FLI) stability
analysis obtained when propagating the averaged or non-
averaged equations of motion. Several relevant stability maps
are discussed.

2. Hamiltonian formulation of the problem

We recall in this section the general form of the Hamil-
tonian only when taking into account only the disturbing
effect of the non-sphericity of the Earth. Since we are
interested in the orbital evolution over long time spans, the
Hamiltonian is averaged over fast variables. The averaged
Hamiltonian is a 2-DOF Hamiltonian where Chirikov's reso-
nance overlap occurs.

2.1. General formulation

We are dealing with the Hamiltonian representing the
motion of a space object considering only the geopotential

effect. Using the Delaunay's variables L;G;H; l; g;hð Þ related to
the conventional Keplerian elements noted a; e; i;Ω;ω;Mð Þ,
the Hamiltonian takes the form of the Keplerian Hamiltonian
perturbed by the non-sphericity of the Earth:

H¼HKep:þHPert: ð2Þ

¼ � μ
2L2

þHPert: L;G;H; l; g;h;θ
� � ð3Þ

where the perturbing's part is given from Kaula's Earth
development [4]

HPert: L;G;H; l; g;h;θ
� �¼X

lZ2

Xl

m ¼ 0

Xl

p ¼ 0

Xþ1

q ¼ �1
Δlmpq cos ψ lmpq

� �
ð4Þ

where

Δlmpq ¼
μ
a

rE
a

� �l
Flmp ið ÞGlpq eð ÞJlm; ð5Þ

ψ lmpq ¼ l�2pþq�m
s0

� 	
Mþωð Þþm λ�λlm

� ��qω; ð6Þ

λ¼ 1
s0

Mþωð Þ� θ�Ω
� �

: ð7Þ

The Flmp(i)-inclination and Glpq(e)-eccentricity functions can be
found in [4], rE denotes the Earth's radius, μ the gravitational

parameter and Jlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
lmþS2lm

q
depends on the coefficients

Clm and Slm describing the Earth's gravitational field. Indexes l
and m are, respectively, the degree and order of the geopo-
tential's development. Following the tradition [5,6], λ denotes
the stroboscopic mean mode where s0 is the closest integer of
the ratio of the mean motion over Earth's rotational rate. The
Hamiltonian given by Eq. (2) is non-autonomous due to the
sidereal time θ. Finally, the quantity λlm is a phase variable
depending only on the coefficient Clm and Slmwhose definition
can be found in [4].

Because the interest in this paper lies in the long-term
analysis concerning the vicinity of the (2:1) tesseral
resonant surface, the previous Hamiltonian, with various
time scales, is now averaged over the fast variable M.

2.2. Averaging the Hamiltonian for the long-term motion

The perturbative part HPert: is split into the secular part
Hsec: (terms independent of angles, those with m¼0 and
l�2pþq¼ 0) and the resonant part Hres:, containing terms
dependent on θ. Averaging the Hamiltonian over the fast
variable M is equivalent to retain in the resonant part only
indexes l;m; p; qð Þ satisfying the ðα:βÞ resonant condition
with ðα:βÞ ¼ ð2:1Þ in this work:

l�2pþq
m

¼ β
α
¼ 1
2
: ð8Þ

The averaged Hamiltonian, that we continue to note H,
takes the form:

H¼HKep:þHsec:þHres:; ð9Þ
and depends only of the angles λ and ω, a 2-DOF problem.
When considered as isolated, i.e when only one resonant
combination (l,m,p,q) is taken into account in Eq. (9),
the dynamics may be reduced to a 1-DOF Hamiltonian by
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