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a b s t r a c t

The majority of the literature that discusses the dynamics of control moment gyroscopes
(CMG) contains formulations that are not derived from first principles and make
simplifying assumptions early in the derivation, possibly neglecting important contribu-
tions. For small satellites, additional dynamics that are no longer negligible are shown to
cause an increase in torque error and loss of torque amplification. The goal of the analysis
presented here is to provide the reader with a complete and general analytical derivation
of the equations for dynamics of a spacecraft with n-CMG and to discuss the performance
degradation imposed to CMG actuators when scaling them for small satellites. The paper
first derives the equations of motion from first principles for a very general case of a
spacecraft with n-CMG. Each contribution of the dynamics is described with its effect on
the performance of CMG and its significance on scaled CMG performance is addressed. It
is shown analytically and verified numerically, that CMG do not scale properly with
performance and care must be taken in their design to trade performance, size, mass, and
power when reducing their scale.

& 2015 Published by Elsevier Ltd. on behalf of IAA.

1. Introduction

Control moment gyroscopes (CMG) are momentum
control actuators used for precise attitude control that
provide higher torque per unit power, mass, and volume
than reaction wheel assemblies (RWA). Much of the
literature discusses the benefits and complexities of
single-gimbal CMG over RWA due to their property of
torque amplification and their inherent geometric singu-
larities [1,14,7]. However, very little analysis has been
published on describing efficiency in terms of torque
amplification properties and accuracy for their use in
operation. Only some work exists that presents a detailed
analysis of their dynamics equations of motion [21]. Even
less prevalent is how previously neglected dynamics for

small CMG systems affects CMG and how this performance
scales with their use in non-traditional applications (e.g.,
space-robotics [17]). When considering smaller satellites,
the trade-off in performance induced from scaling CMG
needs to be understood by the satellite designer.

Considering the dynamics and control of spacecraft
with CMG actuators, an elegant matrix-form dynamics
formulation was presented in Schaub et al. [21] for a
spacecraft with variable speed CMG. A more specific
subset of the dynamics formulation for CMG in Schaub
et al. [21] is shown in Sun et al. [23], which considered the
effect of gimbal-wheel assembly inertia as an attitude
disturbance to the spacecraft–CMG system. Here, an even
more general set of the equations of motion for a space-
craft with n-CMG is derived and is presented. Next,
perturbative terms to the angular momentum that are
not an effect of the CMG design are neglected. Finally,
numerical examples are given to follow the analytics and
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show the degradative effect of scaling CMG actuators on
their accuracy and torque amplification.

The paper is organized as follows: Section 2 derives the
complete equations of motion for a spacecraft containing n
CMG; Section 3 shows analytically, and through numerical
simulation, the degradative effect of scaling CMG on
steering algorithm performance; Section 4 derives the full
equations for torque amplification of a single CMG and
reduces them to a form that is amenable to describing the
degradative effect of scaling CMG on their performance in
terms of torque amplification and verifies this effect
numerically. The paper ends with the conclusion of the
presented analysis.

2. Rotational kinematics and kinetics of a spacecraft with
CMG

This section provides a derivation of the kinematics and
kinetics of a spacecraft with n CMG from first principles.
First, the angular momentum from each moving compo-
nent of the spacecraft–CMG system is derived. Next, the
angular momenta will be differentiated with respect to
time, providing the general equations of motion through
Euler's Second Law. From these equations, contributions of
specific terms to angular momentum perturbations are
identified and those that are assumed irrelevant to the
performance degradation of the CMG in attitude control
performance are neglected.

The notation used for inertia dyadics and angular
momentum vectors xðÞ

ðÞ contain superscripts and subscripts
where the superscript stands for the body which the
inertia and angular momentum contribution are defined
and the subscript indicates the point about which they are
taken. The position vectors in this formulation have only a
subscript which refers to the position of their correspond-
ing point. Any point designated with a CðÞ is the CM of that
particular component (e.g., CGi in Fig. 2 refers to the CM of
the ith gimbal). Consult the nomenclature in the appendix
for further details on notation.

First, let us consider a spacecraft with a single CMG as
shown in Fig. 1. In Fig. 1, we are not assuming that the
center of mass (CM) of the gimbal, rotor, nor spacecraft
body is fixed in the spacecraft body frame F B. Therefore,
we consider the CM positions of the spacecraft with
respect to FB and that of the gimbal and rotor with respect
to their local reference frames FGi

and FWi for a CMG with
origin pi at a position, rCMGi from the point A, as shown in
Fig. 2. The point pi is the origin of the ith CMG body,
assumed to be fixed point in the body frame, and located
between the intersection of the ith gimbal and rotor axes.

The geometry for a system consisting of a spacecraft
with one single-gimbal CMG (SGCMG) is illustrated
in Figs. 1 and 2. The total angular momentum, HS

A
about a point A, of the system S, consisting of a spacecraft
with n-CMG, is the sum of component momenta contribu-
tions

HS
A ¼ hB

Aþ
Xn
i ¼ 1

hCMGi
A ¼ hB

Aþ
Xn
i ¼ 1

ðhGi
A þhWi

A Þ; ð1Þ

where hB
A, h

Gi
A , and hWi

A denote the component angular
momentum contributions from the spacecraft bus

(carrier body), CMG gimbals, and rotors about A, res-
pectively.

2.1. Spacecraft angular momentum

If the CM of the spacecraft n-CMG system is not fixed
with respect to the spacecraft body frame, the angular
momentummay be taken about a fixed point on this frame
first and then transferred to the CM later. Mass integrals
for angular momentum have the form

R
Ar� v for a body A1

where r is the position vector from the point about where
the angular momentum is taken and v is the inertial
translational velocity. Therefore, as shown in Fig. 1, the
carrier body B (i.e., spacecraft body excluding CMG)
angular momentum, hB

A of the spacecraft about a fixed
point A, in the spacecraft body frame, is represented by a
mass integral about the spacecraft body

hB
A ¼

Z
B
ðrBþρÞ � ½vAþωB=I � ðrBþρÞ� dm; ð2Þ

where rB is the position of the spacecraft CM, CB relative to
point A, ρ is the position vector of any differential mass
element relative to CB, vA is the translational velocity
vector of the point A, and ωB=I is the angular velocity

Fig. 2. CMG rotor and gimbal CM offsets (CMG Figure Courtesy of Brian
Hamilton, Honeywell Defense and Space, Glendale, AZ).

Fig. 1. Spacecraft with a single CMG (CMG Figure Courtesy of Brian
Hamilton, Honeywell Defense and Space, Glendale, AZ).

1 A body and a reference frame may be different where the reference
frame is a set of at least three non-collinear points fixed in the body.
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