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a b s t r a c t

The objective of the present paper is to introduce a reliable method to produce an optimal
trajectory in the presence of all limitations and constraints. Direct transcription, has been
employed to convert the trajectory optimization problem into nonlinear programming
problem via discretizing the profile of state and control parameters and solving for a
constrained problem. Differential flatness as a complementary theory leads to model the
optimization problem in a lowered dimensional space through defining flat variables.
Several curvilinear functions have been used to approximate flat variables and have their
own benefits and disadvantages. Accuracy, complexity and number of needed points are
examples of related issues. A new approach is developed based on an indirect approx-
imation of flat variables, which leads to decrease the optimization variables and
computational costs while preserving the needed accuracy. The proposed method deals
with a 3rd order approximation of flat variables via integrating linear function of the
acceleration profile. The new method is implemented on the terminal area energy
management phase of a reusable launch vehicle. Test results show that the suggested
method, as compared with other conventional methods, requires lower computational
efforts in cases of the number of iterations and function evaluations, while providing a
more accurate optimal solution.

& 2014 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Optimal trajectory generation is a vast field of research
among the engineering fields including aerospace engineer-
ing. Awide variety of techniques have been employed to solve
trajectory optimization problems. One set of techniques are
those which are developed, based upon battle-field geometry
and such line of sight angle as proportional navigation [1]. In
these methods the goal is only to reach the terminal point and
to make the impact error as small as possible. Some other
techniques are those resulting from the solution of optimal

control problem via defining the co-state variables in addition
to state variables and solving for a Two-Point Boundary Value
Problem (TPBVP). The latter is also called an indirect method
of optimization which has its own complexities on providing
initial conditions of co-state variables and evaluating analy-
tical calculations for each case example of trajectory optimiza-
tion. Because of such issues, this method has been used only
for some case examples as one of them being reviewed by
Petropoulos and Sims [2]. Linear Quadratic Regulator (LQR) is
an advanced method of solving TPBVP, considering the linear
relation between states and co-states while still analytical
calculations needed if there is a need to change the objectives
of the problem [3]. Also, shooting methods are widely used in
solving TPBVP problems.

Direct methods as the third set of trajectory optimiza-
tion techniques are developed based on avoiding the
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challenges in solving TPBVP, via converting the trajectory
optimization problem into a Nonlinear Programming pro-
blem (NLP). This work is done through parameterization of
problem states time history and subdivided into several
specific time intervals. The optimization problem can then
be solved by use of NLP techniques as Sequential Quadratic
Programming (SQP) [4,5]. A very useful benefit of direct
Optimization is the relief in defining any objectives and
constraints with no need of making analytical calculations.

In direct methods, state and control variables are
usually directly approximated, by use of such curvilinear
functions as Cubic splines and hermit polynomials [6,7],
B-splines [8], Bezier [9] and also Pseudo-spectral methods,
[10,11,12]. NLP techniques are then employed to optimize
the approximated function parameters, and subsequently
make the trajectory not violate the path and terminal
constraints. Some software packages are also developed as
based on such direct optimization methods as DIDO [13].

Another beneficial technique recently developed to
solve trajectory optimization problem is differential flat-
ness [14,15,16,17] in which the dimensions of the problem
are decreased to have more computational performances.

With recent advances in computational techniques,
some new approaches in optimization have emerged so
that in addition to off-line trajectory optimization, the on-
line methods are also under consideration [18].

The objective of this paper is to introduce a reliable
method to produce an optimal trajectory as based on a
combination of the direct optimization method and differ-
ential flatness theory. Approximation of flat variables has
been conducted via a new approach and with some differ-
ences as compared with the conventional methods, including
B-splines or Bezier curves. Finally the developed method has
been tested on a re-entry trajectory optimization problem.

The remainder of the paper is organized as follows; in
Section 2, the knowledge of optimization problem using
nonlinear programming and direct transcription is investi-
gated. Meanwhile differential flatness is taken into considera-
tion and some methods of approximating flat variables are
briefly reviewed. In Section 3 a new approach to approximate
flat variables is introduced and in Section 4 the case example
of re-entry optimization problem implemented on space-
shuttle configuration model enclosed with re-entry dynamics
is described as well. Finally the results of re-entry trajectory
optimization are presented and discussed.

2. Optimal nonlinear trajectory generation

The governing rules of an optimal control problem, direct
transcription and the differential flatness will be presented
within the related section. Also approximation methods will
be reviewed briefly.

2.1. Optimal control problem

Optimal control problem can be concluded as: choose
the control signal uðtÞ to minimize the cost,

J ¼φt0 ;tf
ðxðtt0 ;tf Þ;uðtt0 ;tf ÞÞþ

Z tf

t0
LðxðtÞ;uðtÞÞdt ð1Þ

where L is a nonlinear function and φt0 ;tf
, vector of initial

and final, subject to state equation as follows:

_x¼ f ðxðtÞ;uðtÞÞ
lbrxrub
tA ½t0; tf � ð2Þ

boundary and path constraint

ψ ðxðtÞ;uðtÞ; tÞ ¼ 0; t ¼ t0; tf ð3Þ

ClrCðxðtÞ;uðtÞ; tÞrCu ð4Þ

2.2. Direct transcription

To solve an optimal control problem, some related
techniques have been developed, one of which is direct
transcription. The main idea of direct transcription is to
convert an optimal control problem into a parameteriza-
tion one and to create a finite number of variables known
as Nonlinear Programming (NLP) variables [19]. The first
step is to subdivide continuous problem dynamics ½t0; tf �
into a discrete profile via defining n sequences of smaller
time domains, which is called phases. The boundaries of
each phase end up with a point named node.

t0 ¼ t1ot2o :::otn ¼ tf ð5Þ
Thus, each phase length can be shown as hk ¼ tkþ1�tk

and is sequential for most applications, that is, tkþ1
phn ¼

tkphnþ 1 .
A classical approach to direct transcription is direct

collocation which for the first time outlined by Hargraves
and Paris [7]. In direct collocation the state and control
histories are represented by Hermit polynomials within
each phase. A cubic polynomial could then be used to
approximate the states and controls:

x¼ C0þC1tþC2t2þC3t3 ð6Þ
Coefficients (C0 to C3) can be calculated by use of initial

conditions (state values and state derivatives) at the
boundaries of each collocation interval. The dynamics of
the system are then defined at the midpoint by imposing
an equality constraint resulted from forcing equality of
slope of x and dynamics of the system.

ζ ¼ xkþ1�xk�hk
6 ðf kþ4f kþ1þ f kþ1Þ ¼ 0

f ¼ f ðykþ1;ukþ1; tkþ
hk
2
Þ

ykþ1 ¼
1
2
ðykþykþ1Þþ

hk
8
ðf k� f kþ1Þ ð7Þ

where ζ is called a defect with f k; f kþ1; f kþ1 representing
the values of dynamic system at the first, mid, and the end
points of an interval respectively.

Regarding (7), differential equations will be replaced by
a finite set of defect constraints. As a result of direct
collocation; the optimal control constraints (3) and (4),
and the integration process, are replaced by the nonlinear
programming constraints,

gðxÞ ¼ ½ζ1; ζ2; :::; ζn�1;ψ I ;ψ F ;C1;C2; :::;Cm�
gLrgðxÞrgU ð8Þ
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