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a b s t r a c t

This paper presents an adaptive unscented Kalman filter (AUKF) to recover the satellite
attitude in a fault detection and diagnosis (FDD) subsystem of microsatellites. The FDD
subsystem includes a filter and an estimator with residual generators, hypothesis tests for
fault detections and a reference logic table for fault isolations and fault recovery.
The recovery process is based on the monitoring of mean and variance values of each
attitude sensor behaviors from residual vectors. In the case of normal work, the residual
vectors should be in the form of Gaussian white noise with zero mean and fixed variance.
When the hypothesis tests for the residual vectors detect something unusual by
comparing the mean and variance values with dynamic thresholds, the AUKF with real-
time updated measurement noise covariance matrix will be used to recover the sensor
faults. The scheme developed in this paper resolves the problem of the heavy and complex
calculations during residual generations and therefore the delay in the isolation process is
reduced. The numerical simulations for TSUBAME, a demonstration microsatellite of
Tokyo Institute of Technology, are conducted and analyzed to demonstrate the working of
the AUKF and FDD subsystem.

& 2014 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The main objective of spacecraft attitude estimation
is to determine the orientation of a spacecraft body-fixed
coordinate frame with respect to a reference coordinate
frame. After almost five decades of research work in the
attitude determination (AD) field, one can distinguish
between two broad classes of attitude estimation algo-
rithms: these are the single frame and the filtering based
methods. The filtering based methods are usually more

accurate and possess the advantage of being capable of
yielding estimates at times when there are insufficient
observation data for single frame methods to work. Due to
the nonlinearity imposed by the attitude determination
problem, most of the present-day attitude filtering algo-
rithms rely upon the Kalman filter (KF) extension for
nonlinear systems, namely the extended Kalman filter
(EKF) or unscented Kalman filter (UKF) [1]. The EKF and
UKF are both well-known and flight-confirmed algorithms
for satellite attitude estimation [2,3]. However, the EKF has
a well-known drawback that is the first-order linearization
of the nonlinear system which can introduce large errors
in mean and covariance of the state vector [4].

In microsatellites, due to the limitation in power gen-
eration, spacecraft size, onboard computer performance
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and memory, there are usually no hardware redundancy
devices. Therefore, to increase the robustness and relia-
bility of the AD system, a model-based FDD working as a
redundant function is compactly implemented. The study
on model-based FDD began in the early 1970s [5]. The
natural idea of the model-based fault diagnosis technique
is to replace the hardware redundancy by a process model
which is implemented in the software form in a computer.
In this way, we are able to reconstruct the process
behavior on-line, which is associated with the concept of
hardware redundancy, and is called software redundancy
concept.

The processes of model-based FDD techniques can be
divided into three steps. The first step is to generate a set
of variables known as residuals by using one or more
residual generation filters. Normally, in the absence of
failure/fault, the residuals are zero-mean and white noise,
thereby demonstrating the agreement between the esti-
mates and the observed measurements. In contrast, a
biased residual is indicative of abnormal behavior or fail-
ures. For practical applications, they should be insensitive
to noise, disturbances, and model uncertainties while
maximally sensitive to faults. Some FDD schemes use
two or more residual generation filters in parallel for fault
isolation. In such schemes, each of the residual generation
filters is designed to be sensitive only to the corresponding
selective set of faults. The second step is to make decisions
on whether a fault has occurred (fault detection) and on
where it has occurred (fault isolation) on the basis of the
residuals. This step is usually done using statistical tools to
test if the residuals have significantly deviated from zero.
Finally, the controller is recovered online in response to
the detected faults.

The general and most basic model-based FDD techni-
ques are reviewed and discussed by Ding [5] and Hwang
et al. [6]. Regarding the FDD for AD system, Williamson
et al. present the fault detection and isolation methods for
satellites which use a set of star tracker and a fiber optic
gyroscope (FOG) as the main AD sensors [7]. Pirmoradi and
Sassani present a FDD subsystem for the satellites which
use a rate gyro and vector sensors [8]. Both proposals take
into account the satellite dynamics model to detect and
isolate the faults of gyroscope. To solve dynamics function,
the observers need an iterative numerical method for the
approximation of solutions of ordinary differential equa-
tions. Moreover, these FDD subsystems require the knowl-
edge about internal and external torques acting on the
satellites.

Together with the adaptive filter, this paper also intro-
duces a new FDD subsystem for the satellites which
use one rate gyro and two vector sensors, a Three-axis-
magnetometer (TAM) and a sun acquisition sensor (SAS).
This FDD subsystem includes two filters for residual
generations, hypothesis tests for fault detections and a
logic table for fault isolations and fault recovery. Only a
satellite attitude rotation kinematics model is needed in
the first filter which is based on the UKF to estimate the
satellite attitude, gyro bias value and to generate a residual
vector for the fault detection process. Another estimator is
based on a quaternion estimator (QUEST) [9] method
which uses TAM and SAS for only attitude estimation.

The scheme developed in this paper resolves the problem
of the heavy and complex calculations during residual
generation parts and therefore also the delay in isolation
process is reduced.

Adaptive filters have the property to adapt to a perma-
nently changing environment by which their behavior is
kept optimal. There exist many adaptive methods that
either update the noise covariance matrices in a filter
design, or update filter parameters through least-squares
techniques or by using nonlinear techniques [3]. In this
proposed AUKF, the measurement noise covariance matrix
is updated by using a statistical estimator for attitude
sensors. This statistical estimator and AUKF are activated
right after the fault is detected in ADS. The main purpose
of proposed method is to resist the sensor faults with a fast
and easy to implement method. Therefore the calculation
cost will not increase too much.

The organization of the paper is as follows. In Section 2,
the spacecraft rotation kinematics using quaternion repre-
sentation and sensor models is briefly reviewed. In Section
3, the UKF algorithm and the application of the UKF to
satellite attitude estimation using attitude local error
representation are presented. In Section 4, all of FDD
subsystems including filter designs, residual generations,
statistical tests, diagnosis, and recovery processes are
shown. In Section 5, the details of the residual-based AUKF
algorithm are presented and discussed. In Section 6, some
simulation scenarios and their results are given to discuss
about the robustness and convergence speed of filter.
Finally, in Section 7, the conclusions are given.

2. Attitude kinematics and sensor models

In this section, a brief review of the attitude kinematics
equation of motion using quaternions is shown. Then, the
models of gyro and attitude sensor are briefly reviewed.

2.1. Attitude kinematics

The quaternion is defined by q¼ ½ρT q4 �T , where

ρT ¼ ½ q1 q2 q3 �T is the vector part and q4 is the scalar
part. The quaternion representation is desirable because of
its singularity free property. However, the norm constraint
must be maintained. Since a four-dimension vector is used
to represent three dimensions, the quaternion has a single
constraint given by qTq¼ 1. The attitude matrix is calcu-
lated as a quadratic function of q, that is

A qð Þ ¼ q24�jjρjj2� �
I3�3þ2ρρT �2q4 ρ�� � ð1Þ

where I3�3 is the 3�3 identity matrix and ρ�� �
is the

cross matrix defined as

ρ�� �¼
0 �q3 q2
q3 0 �q1
�q2 q1 0

2
64

3
75 ð2Þ

The quaternion kinematics differential equation is
given by

_q¼ 1
2
Ξ qð Þω¼ 1

2
Ω ωð Þq ð3Þ
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