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a b s t r a c t

Singularity analysis and the steering logic of pyramid-type single gimbal control moment
gyros are studied. First, a new concept of directional passability in a specified direction
is introduced to investigate the structure of an elliptic singular surface. The differences
between passability and directional passability are discussed in detail and are visualized
for 0H, 2H, and 4H singular surfaces. Second, quadratic steering logic (QSL), a new steering
logic for passing the singular surface, is investigated. The algorithm is based on the
quadratic constrained quadratic optimization problem and is reduced to the Newton
method by using Gröbner bases. The proposed steering logic is demonstrated through
numerical simulations for both constant torque maneuvering examples and attitude
control examples.

& 2014 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

A Control Moment Gyro (CMG) system is a momentum
exchange actuator used for the attitude control of a
spacecraft [1,2]. This system is composed of multiple CMGs
installed in the spacecraft, where each CMG contains a
wheel spinning at high speed and gimbal rotating struc-
tures, and is classified into various types such as Single
Gimbal CMG (SGCMG) [3–27], Double Gimbal CMG
(DGCMG) [28,29], Variable Speed CMG (VSCMG) [30–33],
and Double Gimbal Variable Speed CMG (DGVSCMG) [34]
according to the variants of the wheel spinning speed and
gimbal rotating structures. An advantage of CMG systems
is their efficient torque-producing capability: a relatively
small gimbal torque input produces a large torque output
on the spacecraft according to the conservation of angular
momentum. This makes CMG systems popular for reorienting

large space structures and for agile maneuvering of satellites.
A disadvantage of CMG systems is the difficulty in designing a
CMG steering logic because the gimbal angles change during
attitude control. In particular, a CMG system singularity is one
of the major obstacles for designing a CMG steering logic.
Studies on the singularity problem can be roughly classified
into singularity analysis, singularity avoidance, and passability
of a singular surface.

Singularity analyses have been carried out by Margulies
and Aubrun [3] and by Tokar [4–7] for SGCMG systems.
Continuous studies have been conducted by Bedrossian
et al. [8], Kurokawa [9,10], Wie [11], Sands et al. [12], and
Yamada et al. [13], for SGCMG systems and by Yoon and
Tsiotras [32] for VSCMG systems (see [9–11] for a compre-
hensive survey). In order to analyze the singularity of a
CMG system, the angular momentum of the CMG system is
expanded to a series of gimbal angles. The CMG system, as
well as the angular momentum and gimbal angles, is in a
singular state if the Jacobian matrix, the first-order coeffi-
cient matrix of the series expansion, is deficient. Thus, no
control torque can be produced in the sense of the
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first-order approximation along a certain direction, where
a unit vector pointing in this direction is called a singular
vector. The set of all of the angular momentum values in
the singular states constitutes the singular surfaces in the
angular momentum space. Singular surfaces are classified
as external singular surfaces and internal singular surfaces.
A singular surface is called an external singular surface if
the magnitude of the angular momentum on the surface is
larger than that of the other surfaces along each direction;
otherwise, the surface is called an internal singular surface.
Additional angular momentum for its direction is not
possible on an external singular surface by definition;
therefore, the external singular surfaces are impassable
for any trajectory of the gimbal angular velocity. In con-
trast, both passable and impassable cases are possible on
the internal singular surfaces. Because an internal singular
surface exists for any direction inside the external singular
surfaces, the trajectory of the angular momentum vector
might approach the internal singular surface during the CMG
steering. If the angular momentum vector approaches an
impassable singular surface, the CMG steering might stick on
the surface. Therefore, it is necessary to take into account the
internal singular surfaces when designing the CMG
steering logic.

Singularity avoidance has been extensively studied
[12,14–27,35]. The singularity robust inverse [14–17,35]
is simple and suitable for real-time calculations, but the
torque error added near a singular surface is an obstacle
to highly accurate control. The concept of a constrained
workspace [21] is also valid for singularity avoidance, but
the restriction of the available angular momentum might
degenerate the control performance such as the settling.
Feedforward control based on path planning [24–27] is
effective in the case of the rest-to-rest maneuver because
it is not necessary to perform a back calculation of the
gimbal angular velocities from the torque. However, sin-
gularity avoidance is difficult in a case where the attitude
changes with tracking over the whole trajectory. Singular-
ity avoidance is also difficult in the case of feedback
control for the wide-range ground-surface observation by
changing the attitude of the spacecraft. Hence, the passa-
bility of a singular surface is an important problem for
attitude changes with high speed and high accuracy.

The passability of a singular surface is essential in
singularity analysis [3–11]. By the definition of a singular
state, a singular surface is not passable in the direction of a
singular vector in the sense of a first-order approximation.
The passability of a singular surface has been evaluated in
the sense of a second-order approximation; specifically, a
hyperbolic singular surface is passable in the direction of a
singular vector by using null motion. An elliptic singular
surface is another major obstacle in passing a singular
surface. Although the elliptic singular surface is impassa-
ble in the direction of a singular vector by using null
motion, it might be possible to pass the elliptic singular
surface in a certain passing direction by relaxing it from
null motion to arbitrary motion. An example of passing
along a specific direction is constant torque maneuvering,
which is often considered for an agile attitude change. This
leads to a discussion on the directional passability in
a specific direction. Once the surface is judged to be

directionally passable, it is necessary to compute a trajec-
tory for the gimbal angular velocities from a trajectory of
the angular momentum; however, a concrete steering
logic that generates a precise control torque up to
second-order approximation has not been presented in
previous studies. This also leads to a discussion of a new
steering logic for passing a singular surface. In this study,
these problems are addressed for the most typical
pyramid-type SGCMG systems. Our first objective is to
study the directional passability of a singular surface. The
singular surface is directionally passable if the angular
momentum of CMG systems passes the singular surface
along a given direction by using an arbitrary motion. This
directional passability will be evaluated in the sense of the
second-order approximation. First, the condition for direc-
tional passability is obtained for a general direction. The
relation for the condition for passability is then discussed.
Subsequently, the conditions for directional passability are
obtained for the following cases: the direction of a singular
vector and the opposite direction of the angular momentum.
It will be shown that the singular surface is always direc-
tionally passable in the opposite direction of the angular
momentum and that the singular surface is passable in any
direction if it is passable in the same direction as the angular
momentum. This reveals the difficulty of passing a singular
surface in the same direction as the angular momentum. The
differences between the passability and the directional
passability will be visualized in detail for 0H, 2H, and 4H
singular surfaces.

The second objective is to investigate a new steering
logic, referred to as quadratic steering logic (QSL), for
passing a singular surface. QSL is based on a quadratic
constrained quadratic optimization problem, i.e., the pro-
blem to generate the gimbal angular velocities in response
to the control torque up to a second-order approximation
such that the magnitude of the gimbal angular velocities
is suppressed. It should be noted that the well-known
pseudo-inverse steering logic is based on a linear con-
strained quadratic optimization problem; therefore, QSL is
a natural extension of pseudo-inverse steering logic. QSL
is computed via numerical optimization. A key idea is to
represent the codependence between one free gimbal
angle and the other three gimbal angles in the sense of
the second-order approximation by using Gröbner bases.
Then, the minimization of the quadratic cost of the gimbal
angular velocities can be numerically calculated by the
Newton method. The effectiveness of the proposed logic
will be demonstrated through numerical simulations for
two examples. One is for constant torque maneuvering
examples for both directionally passable and directionally
impassable cases. The other is for attitude control exam-
ples, and the logic is compared with singularity avoidance/
escape steering logic [17]. It should be noted that the
magnitude of the gimbal angular velocities can be suffi-
ciently suppressed for a sufficiently small control time
interval in directionally passable cases; however, the
magnitude of the gimbal angular velocities cannot be
always suppressed in directionally impassable cases. This
requires accounting for the saturation of the gimbal
angular velocities for implementation; therefore, the mod-
ified logic is included in attitude control examples.
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