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a b s t r a c t

This investigation explores the natural dynamics in a multi-body regime for formation
flying applications. Natural regions that are suitable to maintain multiple spacecraft in a
loose formation are determined in an inertial coordinate frame. Locating a formation of
spacecraft in these zones leads to a smaller variation in the mutual distance between the
spacecraft and the pointing direction of the formation. These suitable regions approximate
quadric surfaces along a reference trajectory and the relationship between the dynamical
evolution of the quadric surfaces and the eigenstructure of the reference trajectory is
examined.

& 2013 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Spacecraft formations offer many potential applications
in the future of space exploration, including the search for
habitable terrestrial exoplanets, the identification of black
holes, and many others. During the last decade, due to the
detection of a large number of extrasolar planets, new
studies on formation flying in multi-body regimes have
emerged to support space astronomy. For example, the
original New Worlds Observer (NWO) design concept
employs a telescope and an external occulter for the
detection and characterization of Earth-like planets [1].
During the observation of the star, the distance between
the two spacecraft and the pointing direction of the
formation toward the star line-of-sight are maintained
constant. The occulter suppresses the starlight by many

orders of magnitude, to enable the observation of habita-
ble terrestrial planets and the detection of life signs.

The L2 Sun–Earth libration point region has been a
popular destination for satellite imaging formations.
Barden and Howell investigate the natural behavior on
the center manifold near the L2 Sun–Earth libration point
and compute some natural six-spacecraft formations,
which demonstrate that quasi-periodic trajectories could
be useful for formation flying [2]. Later, Marchand and
Howell extend this study and use some control strategies,
continuous and discrete, to maintain non-natural forma-
tions near the libration points [3]. Space-based observa-
tory and interferometry missions, such as the Terrestrial
Planet Finder, have been the motivation for the analysis of
many control strategies. Gómez et al. investigate discrete
control methods to maintain a formation of spacecraft [4].
Howell and Marchand consider linear optimal control, as
applied to nonlinear time-varying systems, as well as
nonlinear control techniques, including input and output
feedback linearization [5]. Hsiao and Scheeres implement
position and velocity feedback control laws to force a
formation of spacecraft to possess a rotational motion
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relative to a nominal trajectory [6,7]. Recently, Gómez et al.
derive regions around a halo orbit with zero relative
velocity and zero relative radial acceleration that ideally
maintain the mutual distances between spacecraft [8].
Most recently, Héritier and Howell then investigate the
natural dynamics in the collinear libration point region for
the control of formations of spacecraft [9,10]. This current
analysis details and expands on the initial work of Héritier
and Howell. A more general understanding of these
natural regions suitable for formation flight is examined
in the inertial frame for the placement of a small formation
of spacecraft along various reference trajectories.

Controlling multiple spacecraft in a multi-body envir-
onment is challenging and a good understanding of the
natural dynamics in this regime is essential. Hence, this
investigation explores the dynamical environment near
the L2 Sun–Earth libration point to aid in the control of
a formation of spacecraft, in terms of the relative distance
between vehicles. Regions with low natural drift that are
suitable to maintain multiple spacecraft in a loose forma-
tion are determined in an inertial frame. Locating
a formation of spacecraft in these zones leads to a smaller
variation in the mutual distance between the spacecraft
and the pointing direction of the formation. The charac-
teristics of these zones are then investigated in detail.
These suitable regions are derived analytically using varia-
tional equations relative to the reference path. They
represent quadric surfaces and the relationship between
the dynamical evolution of the quadric surfaces and the
eigenstructure of the reference trajectory is examined.

2. Dynamical model

For the analysis of spacecraft formations in a multi-
body regime, the Circular Restricted Three-Body Problem
(CR3BP) is selected to describe the motion of the space-
craft. The Sun and the Earth are selected as the two
gravitational bodies for this investigation. The analysis of
the relative motion between vehicles is expressed in an
inertial coordinate frame. The reference trajectories con-
sidered in this analysis are first computed in a rotating
frame relative to the primary bodies and then transposed
in the inertial frame. A chief spacecraft is assumed to move
along a given reference trajectory.

2.1. Relative motion described in the inertial frame

The equations of motion are described in an inertial
coordinate frame where the spacecraft is located relative
to the barycenter of the Sun and the Earth [11]. Let X
define a general vector in the inertial frame describing the
motion of the spacecraft, i.e.,

X ðtÞ ¼ ½x y z _x _y _z�T ð1Þ
where superscript ‘T’ implies transpose. The dynamical
system is defined as

_X ðtÞ ¼ f ðX ; tÞ ð2Þ
The scalar nonlinear equations of motion in their non-
dimensional forms expressed in the inertial frame are then

written as

€x ¼ ð1�μÞðxS�xÞ=r313þμðxE�xÞ=r323 ð3Þ

€y ¼ ð1�μÞðyS�yÞ=r313þμðyE�yÞ=r323 ð4Þ

€z ¼ ð1�μÞðzS�zÞ=r313þμðzE�zÞ=r323 ð5Þ
with

r13 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xSÞ2þðy�ySÞ2þðz�zSÞ2

q
ð6Þ

r23 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xEÞ2þðy�yEÞ2þðz�zEÞ2

q
ð7Þ

and where μ is the mass parameter associated with the
Sun–Earth system. The positions of the Sun and the Earth
are defined as (xS, yS, zS) and (xE, yE, zE), respectively. They
are expressed as

xS ¼ �μ cos ðt�t0Þ; xE ¼ ð1�μÞ cos ðt�t0Þ ð8Þ

yS ¼ �μ sin ðt�t0Þ; yE ¼ ð1�μÞ sin ðt�t0Þ ð9Þ

zS ¼ 0; zE ¼ 0 ð10Þ
where the initial time is assumed to be zero, i.e., t0¼0. The
right-hand side of Eqs. (3)–(5) can be expanded to first-
order in μ as

€x ¼ �x=r3þμFðx; y; z; t; t0ÞþOðμ2Þ ð11Þ

€y ¼ �y=r3þμGðx; y; z; t; t0ÞþOðμ2Þ ð12Þ

€z ¼ �z=r3þμHðx; y; z; t; t0ÞþOðμ2Þ ð13Þ
where r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2

p
, and

F x; y; z; t; t0ð Þ ¼ x� cos ðt�t0Þ
r3

þ 3xðx cos ðt�t0Þþy sin ðt�t0ÞÞ
r5

þ cos ðt�t0Þ�x

ððx� cos ðt�t0ÞÞ2þðy� sin ðt�t0ÞÞ2þz2Þ3=2
ð14Þ

G x; y; z; t; t0ð Þ ¼ y� sin ðt�t0Þ
r3

þ 3yðx cos ðt�t0Þþy sin ðt�t0ÞÞ
r5

þ sin ðt�t0Þ�y

ððx� cos ðt�t0ÞÞ2þðy� sin ðt�t0ÞÞ2þz2Þ3=2
ð15Þ

H x; y; z; t; t0ð Þ ¼ z
r3

þ �z

ððx� cos ðt�t0ÞÞ2þðy� sin ðt� t0ÞÞ2þz2Þ3=2
ð16Þ

The design process relies on variations relative to a
reference trajectory. Given a solution to the nonlinear
differential equations, linear variational equations of
motion are derived from a first-order Taylor expansion
defined as

δ _X tð Þ � ∂f
∂X jX �X ref

δX tð Þþ∂f
∂t jt� tref

δtþO δX
2
; δt2

� �
ð17Þ
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