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a b s t r a c t

At low Earth orbits, drag force is a significant source of error for propagating the motion of
a spacecraft. The main factor driving the changes on the drag force is neutral density.
Global atmospheric models provide estimates for the density which are significantly
affected by bias due to misrepresentations of the underlying physics and limitations on
the statistical models. In this work a localized predictor based on artificial neural
networks is presented. Localized refers to the focus being on a specific orbit, rather than
a global prediction. The predictor uses density measurements or estimates on a given
orbit and a set of proxies for solar and geomagnetic activities to predict the value of the
density along the future orbit of the spacecraft. The performance of the localized predictor
is studied for different neural network structures, testing periods of high and low solar
and geomagnetic activities and different prediction windows. Comparison with previously
developed methods show substantial benefits in using artificial neural networks, both in
prediction accuracy and in the potential for spacecraft onboard implementation. In fact,
the proposed neural networks are computationally efficient and would be straightforward
to integrate into onboard software.

& 2014 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Due to their ease of accessibility, low Earth orbits (LEO)
contain the majority of artificial satellites currently in opera-
tion. At LEO below 700 km, atmospheric drag is the most
significant force acting on spacecraft after gravity. Given that
atmospheric drag is not easy to estimate, it constitutes the
largest source of error force models. The drag force is a

function of several time varying factors, such as atmospheric
winds, drag coefficient, and density. However, the largest
variations in the drag force are caused by changes in the
atmospheric density, as the spacecraft flies through different
regions of the thermosphere with different densities, and also
as those densities fluctuate in response to solar and geomag-
netic activity. Consequently, precise models for the density are
necessary for accurately estimating the drag force, which in
turn is necessary for precise onboard orbit determination.
Reliable onboard orbit determination will be a key factor in
the development of better methods for maneuver planning
and coverage calculations. Furthermore, in the past 30 years
starting with the work of Leonard et al. in Ref. [1] there has
been an increasing body of work focusing on using the drag
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force for maneuvering spacecraft in LEO [2–5]. Accurate
onboard estimation of the density can be used to improve
some of the methods proposed for maneuvering with the
drag force, since it will provide the controllers with an
accurate estimate of the control force.

Over the past 50 years several different global atmo-
spheric models have been developed for calculating the
main characteristics of the thermosphere including den-
sity (a summary of the different models available is
presented by Vallado in [6] chapter 8.6.2.). Global models
can be classified into empirical and physics-based models.
The seminal work for empirical global atmospheric models
is Jacchia0s 1960 [7] model, which uses an empirical
formula that estimates the density as a function of the
geometric height, the 20-cm solar flux (F20) and the
angular distance to the center of the diurnal solar bulge.
Further improvements of this approach include Jacchia
models from 1971[8], 1977 [9], and up to Jacchia–Bowman
2006 (JB2006) [10] and 2008 (JB2008) [11]. The High
Accuracy Satellite Drag Model (HASDM) uses calibration
data from up to 75 inactive satellites and a Dynamic
Calibration of the Atmosphere (DCA) method to correct
older models such as the Jacchia models [12]. DCA meth-
ods use available current measurements to correct the
current density estimate; an example of one of these
methods developed by two of the authors can be seen in
ref [13]. Another highly used empirical global model is the
Mass Spectrometer and Incoherent Scatter Radar model
(MSIS-77) [14]. MSIS-77 uses data from satellites and also
from ground-based measurements from incoherent scatter
radars to estimate density. Several improvements to the
original MSIS from 1977 have been made, including MSIS-
86 [15], MSISE-90 ([16]), and NRLMSISE-00 developed by
the U.S. Naval Research Laboratory [17]. An additional
empirical model is the Drag Temperature Model (DTM)
[18] developed in terms of spherical harmonics, using data
covering nearly two solar cycles. This model has been
further developed as DTM-94 [19] and DTM-2000 [20].

Global circulation models (physics-based models) are an
alternative to the global empirical models for predicting the
density. Among these is the thermosphere–ionosphere–meso-
sphere–electrodynamics General Circulation Model (TIME-
GCM) [21]. This model calculates the global circulation,
temperature and compositional structure with coupled elec-
trodynamics. An additional global circulation model is the
Coupled Thermosphere–Ionosphere–Model (CTIM) [22]. CTIM
is a time dependent, nonlinear model that consists of the
union of two elements: a neutral thermospheric model and a
mid and high latitude ionospheric convection model. CTIM
was further developed by including a model of the plasma-
sphere and low latitude ionosphere, thus producing the
Coupled Thermosphere–Ionosphere–Plasmasphere model
(CTIP) [23]. Later on the Coupled Thermosphere–Iono-
sphere–Plasmasphere Electrodynamic model (CTIPE), pre-
sented in Refs. [24] and [25], was created by combining an
electrodynamic model with CTIP. The Coupled Middle Atmo-
sphere and Thermosphere model (CMAT) [26] and its updated
version (CMAT-2), first applied in [27], are extensions of CTIP
developed at the University College London. Another global
circulation model is the Global Ionosphere–Thermosphere
Model (GITM) [28], developed at the University of Michigan.

GITM consists of a three dimensional spherical code that
solves the energy, momentum and continuity equations.

Global atmospheric models are often designed to esti-
mate much more than just the density, which unfortunately
results in longer computation times and less accurate
results for a specific quantity such as density. Furthermore,
the physics can be misrepresented in the case of the
physical models, while the data used for generating the
empirical ones can be limited. These three factors result in
errors in the prediction of the local density. Furthermore,
the physics based models are computationally expensive
and require several real-time inputs, which hampers
onboard calculations. For these reasons it is desirable to
use a different approach for designing a density predictor
capable of running onboard a satellite.

An alternative originally proposed by Stastny et al. in
Ref. [29] is a localized density model. Such an approach
consists of limiting the model to estimate only the density
along the orbit of a single spacecraft. By introducing these
restrictions, the ability of the model to accurately estimate
the density is greatly enhanced. Provided that measure-
ments or estimates of the density of the medium around
the spacecraft are available on-board, time series forecast-
ing techniques can be used to predict the future density
along the orbit of the spacecraft. In their work, Stastny
et al. [29] used a linear model as the predictor and showed
that such a model provided accurate results, with less bias
than two of the latest empirical models (HASDM and
JB2006) for predicting one orbit into the future.

A similar approach to that of Stastny et al. is used in this
work. However, instead of using a linear model as the
predictor, artificial neural networks (ANNs) are used. A
neural network is capable of forecasting nonlinear beha-
viors since it contains nonlinearities in its neurons, and
therefore it has the potential to accurately model the
nonlinear behavior of the density along the orbit of the
spacecraft. To train, validate, and test the neural networks,
density data from the CHAllenging Minisatellite Payload
(CHAMP) [30], mission was used.

The foremost contributions of this work are

1) Development of neural network-based localized models
for the density that are capable of forecasting the density
to be encountered by a spacecraft along its orbit for
prediction windows of one, eight and 32 orbits into the
future (i.e. approximately 90 min, 12 h and two days
respectively).

2) Appropriate design of the neural network structure
using different parameters such as the sampling rate
of the data, the number of neurons in the hidden layer
and the number of delays of the input.

3) Tests of the neural network predictors over periods of
high and low solar and geomagnetic activities.

4) Comparison of the results of the neural network pre-
dictors with a simple persistence model, a linear model,
JB2006, and HASDM (the latter three obtained from
Ref. [29]) for the one-orbit forecast.

The paper is organized as follows: Section 2 presents
the concept of atmospheric drag and density. Section 3

D. Pérez et al. / Acta Astronautica 98 (2014) 9–2310



Download English Version:

https://daneshyari.com/en/article/1714646

Download Persian Version:

https://daneshyari.com/article/1714646

Daneshyari.com

https://daneshyari.com/en/article/1714646
https://daneshyari.com/article/1714646
https://daneshyari.com

