
Injecting faults to succeed. Verification of the boot software
on-board solar orbiter's energetic particle detector$

Antonio da Silva n, Sebastián Sánchez, Óscar R. Polo, Pablo Parra
Space Research Group, University of Alcala, Alcalá de Henares, Madrid, Spain

a r t i c l e i n f o

Article history:
Received 25 January 2013
Received in revised form
6 September 2013
Accepted 6 November 2013
Available online 14 November 2013

Keywords:
Fault injection
Verification and validation
Bootstrap testing
Single Event Effect
Virtual platforms

a b s t r a c t

It is said that even the longest journey begins with the first step. This is also true for
application software. When the power is switched on, computer systems execute an initial
set of operations that usually perform memory tests and load the final runtime
environment. This paper describes the Single Event Effects (SEEs) requirements verifica-
tion of the boot software that will run in the Instrument Control Unit (ICU) of the
Energetic Particle Detector (EPD) on-board Solar Orbiter. Since in the booting stage there
are no software services at all, it is difficult to achieve a complete software verification on
real hardware. To shortcut this issue the Space Research Group (SRG) of the University of
Alcalá has developed a LEON2 Virtual Platform (Leon2ViP) based on SystemC with fault
injection capabilities. This way it is possible to run the exact same target binary software
as if were run on the physical system, but in a controlled and deterministic environment,
thus allowing a stricter requirements verification. The use of Leon2ViP has meant a
significant improvement, in both time and cost, in the development and verification
processes of the ICU's boot software.

& 2013 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Because of the tough robustness requirements in space
software development, it is imperative to carry out verifica-
tion tasks at a very early development stage to ensure that
the implemented exception mechanisms work properly.
This also helps to evaluate the possible risks, revealing
how the system behaves in the presence of faults. These
fault tolerance requirements call for full simulation envir-
onments, in which virtual platforms allow software to be
developed and tested with a high degree of accuracy at a
very early hardware development stage. This is fundamen-
tal in evaluating the fault detection and recovery mechan-
isms implemented in the software design. The verification
of software fault tolerance mechanisms implemented in

critical systems to recover the system from exceptional
situations can be difficult. This is because such situations
must be systematically and artificially brought about during
the verification phase. Fault tolerance mechanisms are often
verified by means of experimental techniques such as fault
injection, which comprises a variety of techniques for
introducing faults into a system and modifying its behavior
to facilitate the reproduction of hidden or unforeseen
problems in order to:

� verify exception handling and recovery mechanisms: in
classic software testing methodologies, particular excep-
tion or error handling procedures, if any, are rarely trigg-
ered and even less tested [1];

� provide an experimental assessment of the risks [2]:
the system's behavior in the presence of faults can be
used as a way to quantify potential risks of the system
and to allow the prediction of worst-case scenarios.

Virtual platforms are executable models of complete
systems that provide software developers with working

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/actaastro

Acta Astronautica

0094-5765/$ - see front matter & 2013 IAA. Published by Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.actaastro.2013.11.004

☆ This work has been supported by the MINECO under the Grant
AYA2011-29727-C02-02.

n Corresponding author. Tel.: þ34 9133 655 11.
E-mail addresses: adasilva@srg.aut.uah.es,

adasilva@diatel.upm.es (A. da Silva).

Acta Astronautica 95 (2014) 198–209

www.sciencedirect.com/science/journal/00945765
www.elsevier.com/locate/actaastro
http://dx.doi.org/10.1016/j.actaastro.2013.11.004
http://dx.doi.org/10.1016/j.actaastro.2013.11.004
http://dx.doi.org/10.1016/j.actaastro.2013.11.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2013.11.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2013.11.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2013.11.004&domain=pdf
mailto:adasilva@srg.aut.uah.es
mailto:adasilva@diatel.upm.es
http://dx.doi.org/10.1016/j.actaastro.2013.11.004


frameworks a long time before the real hardware is
available. Virtual platforms enable the concurrent devel-
opment of System-on-Chip (SoC) hardware and software,
significantly shortening their integration times. For
embedded software development and verification some
of the advantages of using virtual platforms are to:

� run the same target software binary as if on the
physical system, but in a controlled and deterministic
environment;

� reduce the dependencies of the software and system
tasks on hardware availability;

� provide debugging and fault injection capabilities which
are unattainable otherwise;

� offer the capability to connect physical devices through
standard communication interfaces, thus allowing a
virtual hardware-in-the-loop testing approach.

Verification is a major process in the development of
aircraft and spacecraft software. Its purpose is to detect and
report errors that may have been introduced during the
development process. Verification is typically a combination
of reviews, analyses and tests with the aim of assessing, with
a high degree of confidence, that errors that could lead to
unacceptable failure conditions have been removed.

Embedded software testing has been mainly carried out
on dedicated hardware resources. The limitations incurred
while using these dedicated resources have been known
for a while: cost, availability, the use of intrusive testing
techniques and the lack of debugging capabilities, obser-
vability and controllability. These limitations are notice-
ably more acute when dealing with the testing of fault
tolerance-related properties. These tests require specific
hardware and software setups, which are not always
technically achievable, nor practically affordable in a
non-intrusive manner. The use of a fully virtual platform
is an alternative approach able to yield effective solutions
to these limitations. From an embedded software perspec-
tive, the use of virtual platforms allows the development
and verification processes to be started earlier in the
design flow so as to detect and correct errors that would
otherwise propagate to the final implementation stages.
Moreover, it is easier to access and modify the internal
state of the virtual prototypes, so that a comprehensive
fault injection campaign and fault tolerance assessment
can be carried out.

The remainder of the paper is organized as follows:
relevant related works are detailed in the next subsection.
Section 2 describes the mission's characteristics. Section 3
the embedded software development and testing chal-
lenges. Section 4 describes the adopted solution based on
the use of an ad-hoc virtual platform development. Section
5 describes the experimental setup used to verify several
robustness software requirements along with the results.
Section 6 contains the conclusions.

1.1. Related work

The use of virtual platforms gives developers far more
visibility and control over system design by the very nature

of its virtuality. Any state is within reach and any condition
can be triggered. Therefore, virtual platforms have become
widely used in design space exploration and early software
development in avionics and space software environments,
before the hardware becomes available [4,5]. There are
several approaches, ranging from symbolic execution to
binary compatible instruction-set simulators. Current
research focuses on experimental techniques and tools that
allow software robustness verification through fault
injection.

Several works deal with model-based verification and
symbolic execution. Symbolic execution has been used for a
wide variety of software testing and maintenance purposes.
The main idea behind these techniques is to interpret the
program by simulating its execution with symbolic values
rather than executing it on real hardware. Although, many
symbolic execution techniques assume that the hardware
does not experience errors during the execution of the
program, the work [3] describes a framework which intro-
duces a formal model to represent programs expressed in a
generic assembly language with the ability to bring about
faults that could potentially cause program failures.

Unlike symbolic methods, experimental measurement is
an attractive option for evaluating an existing system or
prototype closely in the field, because it allows the real
execution of the system to be observed to obtain measure-
ments (hopefully highly accurate) in its working environment.
In this regard, fault injection is an attractive option in verifying
the fault tolerance requirements present in critical systems.
Using SystemC Transaction Level Models (TLM) it is possible
to model mixed hardware/software models in order to
simulate the system in the presence of faults. For example,
works [6,7] use this methodology for the design and testing of
fault tolerant systems implemented in an FPGA platform with
different types of diagnostic techniques. The experimental
results show the fault coverage and how Single Event Upset
(SEU) occurrences cause faulty behaviors in the implemented
systems. [8–10] use the same approach to verify the software
of networked embedded systems long before the final hard-
ware is available.

The work [11] describes a previous virtual platform from
the Space Research Group of the University of Alcalá. The
framework integrates a SPARC Instruction Set Simulator (ISS)
together with other platform components by means of TLM
2.0 interfaces. It enables early software development and
verification of platforms based on LEON3, a 32-bit SPARC
CPU-based system used by the European Space Agency.
SimSoC [12] is a similar environment for ARM processors.

The framework presented in this work is a specific
LEON2 virtual platform with fault injection capabilities for
the Instrument Control Unit (ICU) of the Energetic Particle
Detector (EPD) on board Solar Orbiter, along with the first
test results of the boot software. As far as we know, the
platform provides fault injection capabilities that had
never been provided so far by any other LEON2 based
development platform.

2. Solar Orbiter mission

The Solar Orbiter [13] is a planned Sun-observation sate-
llite, under development by the European Space Agency (ESA),

A. da Silva et al. / Acta Astronautica 95 (2014) 198–209 199



Download English Version:

https://daneshyari.com/en/article/1714688

Download Persian Version:

https://daneshyari.com/article/1714688

Daneshyari.com

https://daneshyari.com/en/article/1714688
https://daneshyari.com/article/1714688
https://daneshyari.com

