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a b s t r a c t

The mathematical model for two-dimensional (plane or axis-symmetric) over-expanded
jet flow parameters analysis in the vicinity of supersonic nozzle lip is proposed. The
variation of the key parameters of this problem (e.g., the geometrical curvature of oblique
shock emanating from the nozzle edge) is studied parametrically depending of jet flow
parameters, such as Mach number, jet incalculability, and the ratio of gas specific heats. It
was proved that differential parameters of the flow field crucially depend not only of the
key parameters, but on the symmetry type as well.

& 2013 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The effectiveness of the aviation jet engines and rocket
propulsions can be achieved in many respects due
to correct nozzle configuration and supersonic jet flow
control. It is important to control the shock-wave configura-
tions in under-expanded, correctly expanded or over-
expanded jets flowing out of the nozzle to avoid the boundary
layer separation, auto-oscillating regimes, and longitudinal
instability of the flow supplying the reactive force.

Differential characteristics of the supersonic flow filed
in the vicinity of the nozzle edge often relate to such
physical effects as Taylor–Görtler instability, regular/Mach
reflection mutual transition at small Mach numbers, self-
oscillation phenomena in free, submerged and impact jets.

This article presents a fragment of a complex study on
supersonic jet flows in a vicinity of a nozzle edge. Differ-
ential conditions of dynamic coexistence [1] are applied to
gas dynamic variables and their spatial derivatives at
both sides of oblique shock waves emanating from an
edge of two-dimensional (plane or axis-symmetric) over-

expanded jet flowing into submerged media. Isobaricity
condition at the inviscid gas jet boundary allows us to
investigate a change of the shock geometry, and of the jet
flow boundary, finding special and extreme cases of the
emanation. A crucial differential characteristic which
allows defining all main flow non-uniformities in the edge
vicinity is the geometrical curvature of the oblique shock
emanating from the nozzle lip. The article presents analy-
sis of variations of the differential characteristic in a two-
dimensional jet of a non-viscous perfect gas in relation to
the outflow conditions.

2. Governing relations

The shock wave AT (Fig. 1) emanating from the edge A
of the supersonic nozzle with θ opening angle has the
strength (intensity) J ¼ 1=n where n¼ pa=pnn is jet incal-
culability determined by comparison between static pres-
sure pa of the emanating jet in the nozzle edge vicinity and
the surrounding pressure pn.

The intensity J (relation between pressures behind and
ahead of a shock wave [2]) is limited in the range 1o Jo Jm
where

Jm ¼ ð1þεÞM2�ε
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is the strength of a direct shock wave in the flow with the
Mach numberM ahead of it, M is flow Mach number in the
vicinity of point A upstream the shock, ε¼ γ�1ð Þ= γþ1ð Þ,
and γ is the ratio of gas specific heats (it is assumed in the
further calculations that γ ¼ 1:4).

Flow deflection angle β at the shock wave relates to its
intensity and the Mach number ahead of it as follows:

tg β
�� ��¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Jm� J
Jþε

s
ð1�εÞðJ�1Þ

Jmþε�ð1�εÞðJ�1Þ : ð1Þ

Shock slope angle s to the flow velocity vector ahead of
the shock and the flow Mach number M2 downstream the
shock wave are related to M and J as follows:

J ¼ ð1þεÞM2 sin 2s�ε; ð2Þ

M2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJþεÞM2�ð1�εÞðJ2�1Þ

Jð1þεJÞ :

s
ð3Þ

In a general case, spatial derivatives of various jet
parameters undergo a break at the shock wave surface,
as well as flow parameters themselves. The variations of
the spatial derivatives on the shock sides are described by
differential conditions of dynamic coexistence [1] in the
following form

Ni2 ¼ Ci ∑
5

j ¼ 1
AijNj; i¼ 1…3; ð4Þ

where Ni2 are flow non-uniformities behind the shock wave,
Nj are flow non-uniformities ahead of the shock; Ci and Aij

are the factors which depend on M, J and θ. The non-
uniformities N1 ¼ ∂ ln p=∂s, N2 ¼ ∂θ=∂s, and N3 ¼ ∂ ln p0=∂n
characterize, correspondingly: flow non-isobaricity, stream-
line curvature and the gradient of the total pressure in
isoenergetic flow; N4 ¼ δ=y is symmetry type factor
(δ¼ 0in plane flow, and δ¼ 1 in axis-symmetric one);
N5 � Ks is the own geometrical curvature of the shock.
Conditions (4) determine, in particular, the flow non-
uniformities in the compressed layer directly behind the
shock wave of the known curvature, if the flow field ahead of
it is known.

The writing (4) of the differential conditions on the
stationary shocks in steady non-uniform flow is certainly
not unique. One of the most modern forms of differential
flow field parameters mutual dependence on shock sides
was deduced in Ref. [3] and applied later [4] for gas entropy
variation and flow vorticity analysis. The results reached
below and elaborated in Refs. [5,6] for plane over-expanded

jet are independent of form of writing of correctly deduced
differential relations on stationary shock.

Condition of flow isobaricity (N12 ¼ 0) along the jet
boundary AB (Fig. 1) determines a sought shock wave
curvature

Ks ¼ � ∑
4

j ¼ 1
A1jNj=A15; ð5Þ

as well as other differential flow field parameters in the
compressed layer immediately behind the shock.

In particular, jet boundary curvature (N22 � Kτ) in point
A depends on it as follows:

Kτ ¼ C2 ∑
4

j ¼ 1
ðA2jA15�A1jA25ÞNj=A15; ð6Þ

According to Refs. [7–10], Kτ determines formation and
development of the Taylor–Görtler longitudinal instability.

Relation (5), two-dimensional perfect gas flow equa-
tions applied in front of the shock wave and behind it in
natural coordinates (s, n)

M2�1

γM2 N1þ
∂θ
∂n

þN4 sin θ¼ 0; γM2N2 ¼ � ∂ ln p
∂n

;
∂p0
∂s

¼ 0;

and relations ((1)–(3)) between the shock wave shape, its
intensity and the Mach number on the shock wave sides
determine, after some transformations, e.g., local changes
in the intensity and the Mach number behind the shock
wave in τ direction along the shock wave

dJ
dτ

¼ �2ðJþεÞðB1N1þB2N2þB3N3þχacN4 sin θþqKsÞ;
dM2

dτ
¼ � 1þεðM2

2�1Þ
h i

� M2N22

1�ε
þ N32

1þεð ÞM2

� �
� sin ðs�βÞ: ð7Þ

Here the direction index χ¼�1 relates to the incident

shock wave at Fig. 1, c¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jþεð Þ= Jmþε

� �q
,

q¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jm� J
� �

= Jþεð Þ
q

, and factors Bi have the following

form:

B1 ¼ χac� 1� 1�2εð ÞðM2�1Þ
ð1þεÞM2 ;

B2 ¼ c�
1þε M2�1

� 	
1�ε

�q2

0
@

1
A; B3 ¼ c� 1þεðM2�1Þ

Jmþε
:

Total pressure preservation coefficient at the shock is

I¼ p02=p0 ¼ ðJEγÞð1� εÞ=2ε:

Here p0 and p02 are flow stagnation pressures before the
shock wave and behind it, E¼ ρ0=ρ02 ¼ ð1þεJÞ=ðJþεÞ is the
inverse ratio of gas densities at shock wave sides, ΔS is
entropy variation

ΔS¼ cυ lnðJEγÞ
(сυ is gas specific heat at constant volume). All these

parameters are in uniform dependence on shock intensity.
Thus, the non-uniformity (flow vorticity) N32, according to
(4), and the direction of an isoenergetic jet velocity vortex
vector, according to Crocco formula, are determined by
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Fig. 1. Scheme of the over-expanded jet flow into ambient gas media.
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