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a b s t r a c t

A novel approach based on Lagrange0s time equation and differential orbital elements is
developed to solve the relative Lambert0s problem for circular reference orbits. Compared
with the conventional Clohessy–Wiltshire equation, the proposed method directly obtains
differences of orbital elements between a transfer orbit and a reference orbit. This advantage
enables us to account for singularities that occur in the relative Lambert0s problem. The solved
relative velocities depend on the five differential orbital elements. Accordingly, singularities
can be attributed to any significant change in the semi-major axis, eccentricity, or orbital
plane. Furthermore, appropriately adjusting initial and final relative positions eliminates
some singularities. A numerical simulation based on the classic Lambert0s formula for a
rendezvous mission in closed range demonstrates the analytical results.

& 2014 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The relative Lambert0s problem (RLP) is an extensively
considered issue in impulsive orbital maneuvers, such as
rendezvous, interception, and formation initialization.
Research on relative motion began in the early 1960s
when Clohessy and Wiltshire obtained a linearized equa-
tion (CW equation) that models relative motion on a
circular reference orbit [1]. They used a derivation similar
to the one Hill adopted when studying the relative motion
of the moon in the Earth–Sun system [2]. The CW equation
was then adopted as an elegant model to solve the RLP [3],
with most researchers focusing on the optimization pro-
blem of impulsive control for relative transfers. A com-
monly used optimization tool for impulsive rendezvous is
the primer vector theory, which is developed by Lawden
[4] and modified by Lion and Handelsman [5]. Prussing
solved the minimum-fuel impulsive spacecraft trajectories
for two-impulse rendezvous under a coast time long
enough for one or more complete revolutions [6].

Impulsive control is also extensively used in close opera-
tions, such as formation establishment and reconfiguration
and autonomous proximity [7,8].

These studies on minimizing characteristic velocity
changes assume that mission objectives are achievable,
but this assumption does not always hold for relative
transfers. To illustrate, an inverse term on the transition
matrix emerges in the solved relative velocity; this term
may sharply increase the velocity when the matrix
becomes singular. Xiang et al. first introduced the terms
“unreachable point” and “high-propellant consumption
area” to describe the conditions that surround a singular
matrix and its neighborhood [9]. Zhu considered this
problem the “singularity of RLP” [10]. Although both
research groups obtained singularities by evaluating the
determinant of the matrix, they failed to explain how and
why this singularity occurs. To date, no adequate explana-
tion of this problem has been offered. The CW approach is
unsuitable for explaining this issue because it presents
inadequate information on orbital elements.

Disregarding the CW approach as an option, we focus
on the classic Lagrange0s time equation (LTE) and the
differential orbital element (DOE) model that describes
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relative motion. In the 1770s, Lagrange derived the analy-
tical expression of the classic Lambert0s problem for
elliptical orbits, known as the LTE [11]. This equation also
indicates the relations between the semi-major axis and
two position vectors, provided that transfer time is given.
Alfriend et al. introduced a geometry-based model, called
the DOE model, to study relative orbital motion [12]. Given
that this new model depicts the transformations between
orbital elements and a relative state vector, it is often used
to study the effects of perturbations and formation flying.
Schaub and Gim adopted the DOE model to study relative
motion under the effects of J2 perturbation [13,14]. Jiang
et al. investigated a relative boundary value problem by
using this model to realize spacecraft formation flying [15].

The method for solving the RLP is conventional, but
singularities of the RLP inevitably occur regardless of the
approach used. Guibout and Scheeres used the generating
functions and canonical transformations of Hamiltonian
dynamics to solve the RLP [16,17]. Refs. [12] and [14]
discuss state transition matrices in the form of DOEs for
both circular and elliptical reference orbits. These matrices
can also be used to solve the RLP and account for its
singularities. However, the analytical derivation is some-
what complicated because the boundary conditions are
the six independent equations of seven DOEs, and the
transfer time is inexplicitly contained in the transition
matrix. We instead propose a solution that combines the
LTE and the DOE model, a method simpler than directly
using the state transition matrix of DOEs. Orbital perturba-
tions are excluded from our calculations because the
duration of transfer is relatively short. The effects of
perturbations are therefore negligible in final results.

Compared with the CW approach, the proposed solu-
tion enables us to determine all the DOEs between the
transfer orbit and the reference orbit. Substituting the
DOEs into the transformations between the DOEs and
relative velocities yields the analytical results of the RLP.
It shows that the solved relative velocities depend on only
five DOEs. Consequently, singularity occurs when any one
of these DOEs increases to infinity. Examining the analytical
expressions of the DOEs enables us to readily obtain all
singular conditions. This singularity results in high fuel
consumption and failures in the relative navigation system,
making such a system unacceptable for practical applica-
tions. However, appropriately adjusting the boundary con-
ditions of the RLP can eliminate certain singularities.

The remainder of the paper is organized as follows.
First, a brief review of the CW solution is presented to
illustrate the problem discussed in this paper. We then
derive the analytical expressions of all the DOEs in terms
of two relative positions and transfer time, and obtain the
initial and final relative velocities. On the basis of this new
formulation, the singularities of the RLP are carefully
analyzed through the evaluation of the singular conditions
of each DOE. Finally, a numerical simulation is conducted
to demonstrate the proposed solution and its singularity.

2. Review of the CW solution of the RLP

The RLP involves a transfer orbit and a reference orbit,
as depicted in Fig. 1. We assume that the reference orbit is

circular. In Fig. 1, Ri denotes the absolute position vectors
under the Earth-centered inertial frame, and ri represents
the relative position vectors with respect to the reference
orbit. Subscripts 1 and 2 correspond to initial and final
times, respectively. Δθ is the transfer angle of the reference
orbit during time interval Δt¼t2�t1. Given that Δt is
proportional to the transfer angle for circular orbits, Δθ is
adopted to represent the transfer time in the succeeding
discussions. With these notations, the RLP can be
described as the determination of initial and final relative
velocities v1 and v2 from the given r1, r2, and Δθ.

The relative state vectors are written in terms of the
components under the local-vertical–local-horizontal
frame of the reference orbit

r¼ x y z
� �T

; v¼ _x _y _z
h iT

The following equation is then readily obtained from
the CW model,

r2
v2

" #
¼

φ11 φ12

φ21 φ22

" #
Δt

r1
v1

" #
ð1Þ

where φij denote the submatrices of the partitioned state
transition matrix. Solving the equation yields the solution
of the RLP as follows,

v1 ¼φ�1
12 r2�φ11r1

� �
v2 ¼φ21r1þφ22φ

�1
12 r2�φ11r1

� � ð2Þ

The inverse matrix term φ�1
12 in Eq. (2) is undefined

when the matrix is singular; this phenomenon is regarded
as the singularity in the RLP. When singularity occurs, the
relative velocity increases to infinity, except for some
special cases. This issue is thoroughly explained and
discussed later in this paper. Given that determinant of a
singular matrix is zero, the singularity condition results in

detðφ12Þ ¼
sin Δθð8�8 cos Δθ�3Δθ sin ΔθÞ

n3 ¼ 0 ð3Þ

where n is the mean angular motion of the reference orbit.

Fig. 1. Geometry of the RLP on a circular reference orbit.
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