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a b s t r a c t

This paper presents a model predictive control(MPC) method aimed at solving the
nonlinear optimal control problem with hard terminal constraints and quadratic perfor-
mance index. The method combines the philosophies of the nonlinear approximation
model predictive control, linear quadrature optimal control and Gauss Pseudospectral
method. The current control is obtained by successively solving linear algebraic equations
transferred from the original problem via linearization and the Gauss Pseudospectral
method. It is not only of high computational efficiency since it does not need to solve
nonlinear programming problem, but also of high accuracy though there are a few
discrete points. Therefore, this method is suitable for on-board applications. A design of
terminal impact with a specified direction is carried out to evaluate the performance of
this method. Augmented PN guidance law in the three-dimensional coordinate system
is applied to produce the initial guess. And various cases for target with straight-line
movements are employed to demonstrate the applicability in different impact angles.
Moreover, performance of the proposed method is also assessed by comparison with other
guidance laws. Simulation results indicate that this method is not only of high computa-
tional efficiency and accuracy, but also applicable in the framework of guidance design.

& 2013 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Model predictive control (MPC) is a form of control in
which the current control is obtained by on-line solving
a finite horizon open-loop optimal control problem, using
the current state of the plant as the initial state in the
calculation [1]. It has had a tremendous impact on indus-
trial application development in the last decades. Now, an
increasing number of researchers focus their attention on
the development of “fast MPC”. Different from the off-line
control policy, which is devoted to obtain the control
by solving a full nonlinear optimal control problem,
MPC usually involves employing the neighboring optimal

control problem based on linearized dynamics. In general,
a two-point boundary value problem (TPBVP) is formu-
lated to calculate the current control. In order to reduce
the consumption of time, Ohtsuka and Fujii have extended
the stabilized continuation method to get a real-time
optimization algorithm for nonlinear system [2]. A suitable
continuation parameter is preselected to ensure satisfac-
tory convergence. Lu Ping proposes a closed-form control
law for trajectory tracking, in which a multi-step expan-
sion is used to predict the state and Euler–Simpson
approximation is employed to integral cost. Then, a quad-
ratic programming problem is detected in analytically
obtaining the current control [3]. Yan has applied the
Legendre Pseudospectral method to solve the linear quad-
ratic optimal control problem [4,5]. A set of linear alge-
braic equations transferred from the original problem can
be easily solved to obtain the current control. And this
method has been successfully applied in magnetic attitude
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stabilization of satellite. It is noted that these methods are
based on the assumption that the deviations from the
reference trajectory are small. Paul Williams has proposed
a new method to overcome this drawback [6]. This method
approximates the original problem with successive linear
approximation via quasi-linearization, and a Jacobi pseu-
dospectral scheme is used to transfer the linear optimal
control problem into solving a set of linear algebraic
equations. An explicit integration for short horizon is used
to overcome the comparatively large deviations. Another
noteworthy point is that all these methods are receding
horizon control that only solves a local optimal control from
a finite short time. Therefore, the solution can be obtained
quickly but is not globally optimal. Consequently, those
methods are suitable for tracking a desired trajectory.

To solve the nonlinear optimal control problem with
hard terminal constraints and quadratic performance
index, a new nonlinear optimal control design called mode
predictive static programming(MPSP) is proposed by
Padhi [7–9]. This method combines the idea of nonlinear
model predictive theory with the approximation dynamic
programming. It can obtain the global optimal control.
The current control is obtained via successively solving

the static programming problem. However, this method
should select a large number of nodes to ensure the Euler
integration within a satisfactory tolerance.

In this paper, a method for solving the same problem of
MPSP is presented. This method combines the philoso-
phies of the nonlinear approximation model predictive
control, linear quadrature optimal control and the Gauss
Pseudospectral method [10]. Therefore, the proposed
method is called Linear Gauss Pseudospectral Model Pre-
dictive Control(LGPMPC). Current control is obtained by
successively solving a set of linear algebraic equations
transferred from the original nonlinear control problem
via linearization and the Gauss Pseudospectral method.
This method is attractive from the point of view of
computational efficiency, high accuracy with fewer dis-
crete points and character that the solution can be
expressed in a smooth function with control at discrete
points. It is suitable for on-line implementation. The most
notable difference from the Paul's method is that this
method is used to solve the global optimal control
problem with hard terminal constraints. Therefore, the
horizon is not fixed; the linearization is not designed to
track a desired trajectory. Another important difference is

Nomenclature

ay, az achieved lateral acceleration
ayc, azc commanded lateral acceleration
ayt target lateral acceleration
A, B state-space matrices
dYN2 convergence condition threshold
D differential approximation matrix
Dm aerodynamic drag acceleration
Dn adjoint differential approximation matrix
f dynamical equations
g gravitational acceleration
H Hamiltonian
J cost function
mm mass of missile
ncom longitudinal load profile commanded

acceleration
N number of LG node
Ne proportional navigation guidance constant
Pf terminal state positive semidefinite weighting

matrix
Q state positive semidefinite

weighting matrix.
R control positive semidefinite weighting

matrix
S, K constant matrices in linear algebraic

equations
Sref surface area of missile
t flight time
tτ autopilot time constant
Ttrans preselected parameter to ensure fast transi-

tion in adaptive terminal guidance
u control vector
v Lagrange multiplier

Vm missile velocity
Vc closing velocity
x state vector
[xm ym zm] missile position
[xt yt zt] target position.
Xk, Uk trajectory information data
z unknown vector in linear algebraic equations
γm flight path angle of missile
[θ, φ] angles of the line-of-sight in XY plane and

XZ plane.
λ costate vector
λ1, λ2 adaptive proportional parameters
ρ air density
s line of sight angle
_s line of sight rate
τ normalized time
ψ terminal constraint function
ψm heading angle of missile
ψt heading angle of target
Ψ terminal constraint function
ω gauss weights

Subscript

p previous value
f terminal value
m missile
n normalized value
t target
pitch pitch plane
yaw yaw plane
0 initial value
n normalizing variables
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