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a b s t r a c t

A high order optimal control strategy is proposed in this work, based on the use of
differential algebraic techniques. In the frame of orbital mechanics, differential algebra
allows to represent, by high order Taylor polynomials, the dependency of the spacecraft
state on initial conditions and environmental parameters. The resulting polynomials can
be manipulated to obtain the high order expansion of the solution of two-point boundary
value problems. Since the optimal control problem can be reduced to a two-point
boundary value problem, differential algebra is used to compute the high order expansion
of the solution of the optimal control problem about a reference trajectory. Whenever
perturbations in the nominal conditions occur, new optimal control laws for perturbed
initial and final states are obtained by the mere evaluation of polynomials. The perfor-
mances of the method are assessed on lunar landing, rendezvous maneuvers, and a low-
thrust Earth–Mars transfer.

& 2013 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Nominal space trajectories are usually designed by
solving optimal control problems that minimize the con-
trol action to meet mission constraints. However, uncer-
tainties and disturbances affect the spacecraft dynamics in
real scenarios. Moreover, state identification is influenced
by navigation errors; consequently, the spacecraft state is
only known with a given accuracy. Thus, after the nominal
solution is computed, an optimal feedback control strategy
that assures the satisfaction of mission constraints must be
implemented. More specifically, given an initial deviation
of the spacecraft state from its nominal value or a pertur-
bation on the nominal final target conditions, the optimal
control aims at canceling the effects of such errors by
correcting the nominal control law, while minimizing
propellant consumption.

Optimal feedback control was originally developed for
linear systems. In linear optimal control theory, the system
is assumed linear and the feedback controller is con-
strained to be linear with respect to its input [1]. The
technological challenges imposed by the recent advances
in aerospace engineering are demanding stringent accu-
racy requirements and cost reduction for the control of
nonlinear systems. Unfortunately, the accuracy of linear-
ized dynamics can drop off rapidly in nonlinear aerospace
applications, affecting the performances of linear optimal
controller. Thus, nonlinear optimal feedback control theory
has gained interest in the past decades.

Various aspects of nonlinear optimal control have been
addressed. Several techniques are available for solving
control-affine problems, which are mainly based on dynamic
programming or calculus of variations. In Bellmans dynamic
programming, the problem is approached by reducing
it to solving the nonlinear first-order partial differential
Hamilton–Jacobi–Bellman (HJB) equation [2]. The solution
to the HJB equation determines the optimal feedback
control, but its use is very intricate in practical problems.
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An alternative approach is based on the calculus of varia-
tions and Pontryagins maximum principle, which show
the Hamiltonian nature of the second order information of
the optimal control problem [3]. Within this frame, the
optimal control problem is reduced to a two-point bound-
ary value problem (TPBVP) that is solved, in general,
by successive approximation of the optimal control input
using iterative numerical techniques. However, the solu-
tion determined is only valid for one set of boundary
conditions, which prevents its immediate use for feedback
control.

The complexity of finding the exact solution of the HJB
equation has motivated research for approximated methods
that are able to supply suboptimal laws for the control
of nonlinear systems about reference solutions. In Bryson
and Ho [2], an approximating technique is presented, based
on a second order expansion of the augmented performance
index of the optimal control problem, which is referred
to as neighboring extremal paths computation. The State-
dependent Riccati equation (SDRE) control method is among
the more attractive tools to obtain such approximate solu-
tions. It was originally proposed by Pearson [4], and Wernli
and Cook [5], and then described in detail by Mracek and
Cloutier [6], and Beeler [7]. This method involves manipulat-
ing the governing dynamic equations into a pseudo-linear
non-unique form in which system matrices are given as a
function of the current state and minimizing a quadratic-like
performance index. An algebraic Riccati equation using the
system matrices is then solved repetitively online to give the
optimal control law. Thus, the SDRE approach might turn out
to be computationally expensive when the solution of the
Riccati equation is not properly managed. This can prevent its
use for real-time optimal control. A significant computational
advantage can be obtained with the θ�D technique [8].
Similar to SDRE, the θ�D technique relies on an approximate
solution to the HJB equation. However, it offers a great
computational advantage for onboard implementation with-
out solving the Riccati equation repetitively at every instant.

Recent advances have been made in the frame of
variational approach to optimal control theory. Second
order methods were introduced by Bullock [9] and then
extended by Olympio [10] to space trajectory design. Based
on the Hamiltonian nature of the optimal control problem,
the method computes a linear control update iteratively
using the gradient of the Hamiltonian function. A higher
order approach was introduced by Park and Scheeres
[11] through the theory of canonical transformations.
More specifically, canonical transformations solve bound-
ary value problems between Hamiltonian coordinates and
momenta for a single flow field. Thus, based on the
reduction of the optimal control problem to an equivalent
boundary value problem, they can be effectively used to
solve the optimal control problem analytically as a func-
tion of the boundary conditions, which is instrumental
to optimal feedback control. The main difficulty of this
approach is finding the generating functions via the solu-
tion of the Hamilton–Jacobi equation. This problem was
solved by Park and Scheeres by expanding the generating
function in power series of its arguments.

Differential algebraic (DA) techniques [12] are used in
this work to develop an alternative approach to the gene-

rating function method. Differential algebra serves the
purpose of computing the derivatives of functions in a
computer environment. More specifically, by substituting
the classical implementation of real algebra with the
implementation of a new algebra of Taylor polynomials, it
expands any function f of v variables into its Taylor series up
to an arbitrary order n. DA techniques are used in this work
to represent the dependency of the spacecraft state on the
initial conditions by means of high order Taylor polyno-
mials. Then, the resulting Taylor polynomials are manipu-
lated to impose the boundary and optimality conditions of
the optimal control problem. This enables the expansion of
the solution of the optimal control problem with respect to
the initial conditions about an available reference trajectory.
The resulting Taylor polynomials can be evaluated for new
solutions of the optimal control problem, so avoiding
repetitive runs of classical iterative procedures.

The paper is organized as follows. A brief introduction
to differential algebra is given in Section 2. Being at the
basis of the proposed methods, the possibility of expand-
ing the flow of ODEs is presented in Section 3. The optimal
control problem and the algorithm for the high order
expansion of its solution are illustrated in Sections 4 and 5,
respectively. The application of the algorithm to a rendez-
vous maneuver, a lunar landing, and a low-thrust Earth–
Mars transfer problem is addressed in Section 6.

2. Differential algebra

DA techniques find their origin in the attempt to solve
analytical problems by an algebraic approach [12]. Histori-
cally, the treatment of functions in numerics has been
based on the treatment of numbers, and the classical
numerical algorithms are based on the mere evaluation
of functions at specific points. DA techniques are based on
the observation that it is possible to extract more informa-
tion on a function rather than its mere values. The basic
idea is to bring the treatment of functions and the
operations on them to the computer environment in a
similar way as the treatment of real numbers. Referring to
Fig. 1, consider two real numbers a and b. Their transfor-
mation into the floating point representation, a and b, is
performed to operate on them in a computer environment.
Then, given any operation � in the set of real numbers, an
adjoint operation ⊗ is defined in the set of FP numbers
such that the diagram in figure commutes. (The diagram
commutes approximately in practice, due to truncation

Fig. 1. Analogy between the floating point representation of real num-
bers in a computer environment (left figure) and the introduction of the
algebra of Taylor polynomials in the differential algebraic framework
(right figure).

P. Di Lizia et al. / Acta Astronautica 93 (2014) 217–229218



Download English Version:

https://daneshyari.com/en/article/1714881

Download Persian Version:

https://daneshyari.com/article/1714881

Daneshyari.com

https://daneshyari.com/en/article/1714881
https://daneshyari.com/article/1714881
https://daneshyari.com

