
An integrated development framework for rapid development of
platform-independent and reusable satellite on-board software$

Claas Ziemke a,n, Toshinori Kuwahara b,1, Ivan Kossev c

a Institute of Space Systems, University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany
b Graduate School of Engineering, Department of Aerospace Engineering, Tohoku University, 980-8579 Aoba, 6-6-01 Sendai, Japan
c Private, Stuttgart, Germany

a r t i c l e i n f o

Article history:

Received 3 February 2011

Received in revised form

9 April 2011

Accepted 11 April 2011
Available online 20 May 2011

Keywords:

On-board software

Reusable

Platform-independent

System simulation

Open-source

a b s t r a c t

Even in the field of small satellites, the on-board data handling subsystem has become

complex and powerful. With the introduction of powerful CPUs and the availability of

considerable amounts of memory on-board a small satellite it has become possible to

utilize the flexibility and power of contemporary platform-independent real-time

operating systems. Especially the non-commercial sector such like university institutes

and community projects such as AMSAT or SSETI are characterized by the inherent lack

of financial as well as manpower resources. The opportunity to utilize such real-time

operating systems will contribute significantly to achieve a successful mission. Never-

theless the on-board software of a satellite is much more than just an operating system.

It has to fulfill a multitude of functional requirements such as: Telecommand inter-

pretation and execution, execution of control loops, generation of telemetry data and

frames, failure detection isolation and recovery, the communication with peripherals

and so on. Most of the aforementioned tasks are of generic nature and have to be

conducted on any satellite with only minor modifications. A general set of functional

requirements as well as a protocol for communication is defined in the SA ECSS-E-70-41A

standard ‘‘Telemetry and telecommand packet utilization’’. This standard not only

defines the communication protocol of the satellite–ground link but also defines a set of

so called services which have to be available on-board of every compliant satellite and

which are of generic nature. In this paper, a platform-independent and reusable

framework is described which is implementing not only the ECSS-E-70-41A standard

but also functionalities for interprocess communication, scheduling and a multitude of

tasks commonly performed on-board of a satellite. By making use of the capabilities of

the high-level programming language C/Cþþ, the powerful open source library BOOST,

the real-time operating system RTEMS and finally by providing generic functionalities

compliant to the ECSS-E-70-41A standard the proposed framework can provide a great

boost in productivity. Together with open source tools such like the GNU tool-chain,

Eclipse SDK, the simulation framework OpenSimKit, the emulator QEMU, the proposed

on-board software framework forms an integrated development framework. It is

possible to design, code and build the on-board software together with the operating

system and then run it on a simulated satellite for performance analysis and debugging

purposes. This makes it possible to rapidly develop and deploy a full-fledged satellite

on-board software with minimal cost and in a limited time frame.

& 2011 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/actaastro

Acta Astronautica

0094-5765/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.actaastro.2011.04.011

$ This paper was presented during the 61st IAC in Prague.
n Corresponding author. Tel.: þ49 711 685 62326; fax: þ49 711 685 63596.

E-mail addresses: ziemke@irs.uni-stuttgart.de (C. Ziemke), kuwahara@astro.mech.tohoku.ac.jp (T. Kuwahara), ikossev@gmail.com (I. Kossev).
1 Tel.: þ22 795 6990; fax: þ22 795 6991.

Acta Astronautica 69 (2011) 583–594

www.elsevier.com/locate/actaastro
dx.doi.org/10.1016/j.actaastro.2011.04.011
mailto:ziemke@irs.uni-stuttgart.de
mailto:kuwahara@astro.mech.tohoku.ac.jp
mailto:ikossev@gmail.com
dx.doi.org/10.1016/j.actaastro.2011.04.011


1. Introduction

Small satellites can be categorized in respect to the
satellite ordering customer into four different groups. The
first group is constituted by the agency ordered satellites
which are mainly scientific missions. The second group is
constituted by the commercial and industry satellites.
This group of satellites is characterized by the goal to
create revenue through delivering a product to customers.
The third group is constituted by the military satellites
which are ordered and operated by military organizations.
The last group of small satellites is formed by the
university and amateur satellites [1]. These amateur and
university small satellites are usually designed following
different design principles compared with small satellites
of the groups one to three. Those design principles are
mostly ‘‘Keep it simple, Stupid!’’ (KISS) and mean that any
unneeded complexity should be avoided in order to make
the satellite more reliable.

In addition to small budgets, university and amateur
satellite projects also are characterized by limited human
resources. This lack of human resources, especially in the
field of software engineering, the design principles and
the usage of non-standard communication protocols often
lead to non-optimal operation scenarios.

All of the aforementioned groups have in common that
also small satellites follow Moore’s law [2]. The computa-
tional power of the on-board data-handling subsystems
as well as the data rates and storage capacity have
increased significantly in the last years. This trend in data
rates and amount is shown in Fig. 1: Moore’s law for small
satellites. Especially when using commercial of the shelf
parts, the performance is significantly increased. The
rising complexity of the hardware can only be dealt with
a more complex software system [3].

In order to deal with rising complexity of hardware and
software as well as with the limited human resources, an
on-board software framework currently is being developed
by the author in the course of a university small satellite
program. The main design goals of this on-board software
framework are re-usability, platform independence, inter-
operability and extendability. The usage of a framework for
the development of a satellite on-board software allows the
software engineers to focus on essential features such as

control algorithms and mission specific functionalities. It
also allows the reuse of generic parts of the on-board
software. The usage of standardized communication proto-
cols makes possible the usage of agency ground stations and
fosters interoperability.

In addition to the on-board software framework itself,
an integrated development flow is currently under devel-
opment in order to test and verify the proposed on-board
software framework. This development flow consists of
the following steps: First the on-board software frame-
work runs on Xenomai real-time Linux and can be tested
extensively using standard software development prac-
tice such as unit testing, code coverage analysis, memory
profiling and so on. [4]. After the basic functionality is
tested, the on-board software runs inside a simulated on-
board computer connected to a simulated satellite. The
simulated parts of this environment are then gradually
replaced with real hardware, starting with the on-board
computer. The on-board software then runs on a devel-
opment board or a breadboard-model of the on-board
computer which again is connected to a simulated satel-
lite. Finally, the on-board software runs on the on-board
computer connected to the real satellite hardware. This
development flow is called system simulation and is
state-of-the-art in industrial satellite projects [5].

The goal of the integrated development framework
described in this paper is to allow university and amateur
satellite projects to use system simulation in the devel-
opment process together with the proposed on-board
software framework. This can lead to a great boost in
productivity because the developers can concentrate on
the architectural design of the on-board software and
neither have to implement infrastructural features such
as schedulers and interprocess communication methods
nor testing infrastructures such as simulators. This again
can, together with the usage of standardized communica-
tion protocols, lead to superior operational scenarios
compared to conventional approaches.

2. Simulation framework

For embedded software and especially safety critical
software profound testing and verification is essential.
Traditionally the testing of the software is done by so called

Fig. 1. Moore’s law for small satellites [2].

C. Ziemke et al. / Acta Astronautica 69 (2011) 583–594584



Download English Version:

https://daneshyari.com/en/article/1715551

Download Persian Version:

https://daneshyari.com/article/1715551

Daneshyari.com

https://daneshyari.com/en/article/1715551
https://daneshyari.com/article/1715551
https://daneshyari.com

