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a b s t r a c t

This paper investigates the formation keeping problem for multiple spacecraft in the

framework of networked control systems (NCSs). A continuous-time representation of

the NCS is considered for the tracking control of relative translational motion between

two spacecraft in a leader–follower formation in the presence of communication

constraints and system uncertainties. Model-based control schemes are presented,

which employ state feedback (when the relative position and velocity vectors are

directly measurable) and output feedback (when velocity measurements are not

available), respectively, to guarantee input-to-state stability (ISS) of the system. The

stability conditions on network transfer intervals are derived as simple eigenvalue tests

of a well-structured test matrix. The results are then extended to include network

communication delay. Numerical simulations are presented to demonstrate the effec-

tiveness of the control scheme ensuring high formation keeping precision and robust-

ness to nonlinearities and system uncertainties. The proposed controllers are robust not

only to structured uncertainties such as system parameter perturbations but also to

unstructured uncertainties such as external disturbances and measurement noises.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Spacecraft formation flying (SFF), a novel concept of
distributing the functionality of large spacecraft among
several smaller and cooperative spacecraft, has been
identified as an enabling technology for many space
missions such as Earth observing, geodesy, deep space
imaging and exploration, and in-orbit servicing [1,2]. It
has received considerable attention due to several advan-
tages including greater launch flexibility, higher system
reliability, easier system upgrade and lower life cycle
cost [3,4]. In particular, the tracking control problem of
relative position is a topic of significant research interest
in current reported literature. Several control approaches

have been developed based on the linearized relative
position dynamics known as Hill’s equations [5] or Clo-
hessy–Wiltshire equations [6], and nonlinear dynamics.
Linear quadratic (LQ) control was adapted in [7–9] for
formation keeping control. Queiroz [10] developed a
nonlinear adaptive control law for the relative position
tracking of multiple satellites. Wong et al. [11] designed
an adaptive output feedback controller to guarantee the
asymptotic convergence of relative translation errors. The
tracking control problem has also been examined based
on sliding mode approach [12–14] to provide asymptoti-
cally stable nonlinear tracking. The application of fuzzy
technique was considered by Meng et al. [15], where a
low-thrust fuzzy controller was presented on the basis of
Clohessy–Wiltshire equations.

The aforementioned literatures assume perfect real-
time communication. However, with the rapid develop-
ments in the microelectronics and telecommunication,
communication network is adopted widely to exchange
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information (reference input, plant output, etc.) and con-
trol signals to make a formation exhibit a desired beha-
vior. The insertion of a network into the control loop
imposes communication constraints including irregularity
of transfer intervals, existence of communication delay
and the possibility of packet losses, among others. As a
result of these specific constraints, direct application of
many traditional control techniques may be impossible, or
may lead to performance degradation and instabil-
ity [16,17]. The traditional control results must be reeval-
uated before they can be applied to the networked
spacecraft control systems. On the other hand, the space-
craft in a formation is always subject to uncertainties from
system parameter perturbations, external disturbances,
and so on, which may cause a serious drift of the relative
positions. These factors all need to be considered for
achieving desired formation control performance.

The objective of this paper is to develop robust and
intelligent control algorithms for spacecraft formation keep-
ing in the presence of communication constraints and
system uncertainties. When a control loop is closed via a
communication channel, the interconnection is referred to
as a ‘‘networked control system’’ (NCS) [18–21,24–26].
Several specific control techniques have been developed to
deal with communication constraints. One such technique
is model-based control, which was used in [22,23] for
sampled-data systems and in [24–26] for NCSs. In model-
based NCSs, a plant model is included into the controller
node and the control action is calculated based on the
current state of the model rather than the actual state of the
plant. Furthermore, the state of the model is updated from
time to time based on measurement of the actual state of
the plant. Essentially, the model-based approach utilizes a
trade-off between two control strategies: closed-loop con-
trol which guarantees good performance characteristics but
requires real-time data exchange, and open-loop control
which requires little communication but lacks desired
performance guarantees.

This paper focuses on input-to-state stability, pro-
posed by Sontag [27], for the SFF system with distur-
bances. This notion is important given an intrinsic
robustness problem. Indeed, the presence of disturbances
(in addition to the model mismatch resulting from system
parameter perturbations) implies that model estimates
will deviate from the true plant output measured by
sensors. In this paper the formation keeping problem for
multiple spacecraft flying is investigated in the frame-
work of networked control systems. A continuous-time
representation of the NCS is considered for the tracking
control of relative translational motion between two
spacecraft in a leader–follower formation in the presence
of communication constraints and system uncertainties.
Model-based control schemes are presented, which
employ state feedback (when the relative position and
velocity vectors are directly measurable) and output
feedback (when velocity measurements are not available),
respectively, to guarantee input-to-state stability (ISS) of
the system. The stability conditions on network transfer
intervals are derived as simple eigenvalue tests of a well-
structured test matrix. The maximum allowable transfer
interval to guarantee formation stability can be

determined as well. The results are then extended to
include network communication delay. Numerical simu-
lations are presented to demonstrate the effectiveness of
the control scheme ensuring high formation keeping
precision and robustness to nonlinearities and system
uncertainties. The proposed controllers are robust not
only to structured uncertainty such as system parameter
perturbations but also to unstructured uncertainty such
as external disturbances and measurement noises.

This paper is organized as follows. The dynamics of the
leader and follower spacecraft are described in Section 2.
In Sections 3 and 4, ISS stability conditions are developed
for the cases of state and output feedback control,
respectively. An extension to the state feedback system
with communication delay is presented in Section 5.
Numerical simulations are presented in Section 6. Finally,
this paper is closed with conclusions in the last section.

2. Preliminaries

2.1. Notations and definitions

The following notation will be used throughout this
paper. Denote Zþ ¼ f0,1,2, . . .g. A continuous function a :
RZ0-RZ0 is said to belong to class K if að0Þ ¼ 0 and it is
strictly increasing. Also, a continuous function b : RZ0 �

RZ0-RZ0 is said to belong to class KL if for each fixed
tZ0,bð�,tÞ belongs to K and for each fixed sZ0,bðs,tÞ
decreases to zero as t-1. The superscript T stands for
the transpose of a vector or a matrix. Rn denotes the
n-dimensional Euclidean space and Rm�n is the set of all
real matrices of dimension m�n. I stands for the identity
matrix with appropriate dimension and diagf� � �g stands
for a block-diagonal matrix. For a matrix A, we denote
lminðAÞ and lmaxðAÞ as its minimal and maximal eigenva-
lues, respectively. The notation j � j refers to the Euclidean
norm of a vector or the induced norm of a matrix. Given a
continuous function d : ½t0,1Þ-Rn, we define its L1
norm as follows: JdJ1 ¼ supsZ t0

jdðsÞj.

Definition 1 (Sontag and Wang [27]). The system
_x ¼ f ðx,dÞ is said to be input-to-state stable if there exist
b 2 KL and g 2 K such that, for all d 2 L1 and xðt0Þ 2 R

n

the solution of this system satisfies jxðtÞjrbðjxðt0Þj,
t�t0ÞþgðJdJ1Þ, 8tZt0Z0.

Remark 1. This inequality guarantees that for any
bounded disturbances d(t), the state x(t) will be bounded.
Furthermore, as t increases, the state x(t) will be ulti-
mately bounded by a class K function of JdJ1. Since, with
dðtÞ � 0, this inequality reduces to jxðtÞjrbðjxðt0Þj,t�t0Þ,
ISS implies that the equilibrium point of the unperturbed
system is uniformly asymptotically stable.

2.2. Relative dynamics

In this section we present the equations of motion of
spacecraft in a leader–follower formation. The inertial
coordinate system S�XYZ is attached to the center of
the Earth. Let rl=[r, 0, 0]T denote the position vector of the
leader spacecraft with respect to the inertial coordinate
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