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a b s t r a c t

An improved adaptive Huber filter algorithm is proposed to model error and measure-

ment noise uncertainty in this work. The adaptive algorithm for model error is obtained

by using an upper bound for the state prediction covariance matrix with augment of

chi-square statistical hypothesis test in case of filter deteriorated by wrong residual

information. The measurement noise is estimated at each filter step by minimizing a

criterion function which was original from Huber filter. A recursive algorithm is

provided for solving the criterion function. The proposed adaptive filter algorithm

was successfully implemented in radar navigation system for spacecraft formation

flying in high earth orbits with real orbit perturbations and non-Gaussian random

measurement error. Simulation results indicated that the proposed adaptive filter

performed better in robustness and accuracy compared with previous adaptive

algorithms.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

For spacecraft formation flying in High Earth Orbit (HEO)
with various orbit perturbations, a standard dynamic model
can not accurately describe the real relative motion of the
formation vehicles for navigation filter design. Some adap-
tive modifications should be augmented to the typical
Kalman filter to incorporate process model uncertainty. By
using theory of linear matrix inequalities [1], Subrahmanya
and Shin [2] proposed an adaptive modification of Divided
Difference Filter (DDF) which deals with model errors by
estimating the upper bound of the state prediction in real
time. Recently, it has been successfully adopted for adaptive
relative navigation design for HEO formation scenarios [3].

Measurement problem arises for relative navigation
implementation. Although Global Position System (GPS)
provides a nature candidate for relative navigation and

actually has been used as the major sensors in [3,4], the
HEO formation spacecraft maintains visibility to at least
one GPS satellite just 50% of the entire orbiting time (with
assumed half angle of GPS antenna main lobe of typical
22.5 deg). HEO formation spacecraft will most likely
involve the use of radar for relative navigation since the
advantage of not relying the external sensors. It could be
of great reliable for missions as autonomous rendezvous
and docking in HEO or even away from HEO, perhaps
in lunar orbit, for example. Because radar systems are
known to exhibit non-Gaussian random measurement
errors [5], it is important to develop estimation techni-
ques for radar based relative navigation that are robust
with respect to deviations from the assumption of
Gaussianity. One such technique is the Huber filter [6,7],
which is a combined minimum l1 and l2 norm estimator
and it has actually been used for relative navigation design
for robust rendezvous in elliptical orbit and tracking [8,9].

Extending previous research, this paper proposed an
improved adaptive Huber filter by accounting for both
model error and measurement noise uncertainty. The
basic idea is to improve the adaptive algorithm similarly
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as in [2] by using the methodology given by Huber [6,7].
Moreover, a failure diagnosis method is augmented in this
paper since it is also of great importance for practical
applications. The method is basically a chi-square statis-
tical hypothesis test for examining whether a random
vector has an assumed mean and covariance [10,11].
Simulation results indicate that the proposed adaptive
algorithm can be applied to relative navigation of space-
craft formation flying in HEO with promising robustness
and accuracy.

2. Adaptive Kalman filter

Because of the complex nature of nonlinear estimation
problems, many estimation algorithms rely on various
assumptions to ensure mathematical tractability. We
begin with an overview of the typical Kalman filter for
states estimation. Then the Kalman filter algorithm is
expanded and adapted for model uncertainty. The adap-
tive filter that incorporates unknown measurement noise
is then provided.

2.1. Typical Kalman filter

The class of systems considered here is given as

xk ¼ f ðxk�1ÞþGwk�1

yk ¼Hxkþvk ð1Þ

where xk 2 R
n denotes the state vector. The output vector

is yk 2 R
p and the nonlinear model is f ðxk�1Þ. We assume

that f is either a globally Lipschitz continuous function or
that it is locally Lipschitz continuous with xk restricted to
a compact domain D 2 Rn. The process/measurement
noise wk and vk is assumed to be independent, identically
distributed Gaussian random variables with

wk �N ð0,QkÞ vk �N ð0,RkÞ: ð2Þ

The typical Kalman filter based estimation method is a
recursive scheme that propagates a current estimate of a
state and the error covariance matrix of that state forward
in time. The filter optimally blends the new information
introduced by the measurements with old information
embodied in the prior state with a Kalman filter gain matrix.
The gain matrix balances uncertainty in the measurements
with the uncertainty in the dynamics model.

2.2. Adaptive Kalman filter for model error

The typical Kalman filter requires complete specifica-
tions of dynamical system to achieve optimal perfor-
mance, i.e. the system model provided to the filter must
be accurate. However, in practical situations, it is either
unknown or partially known that seriously degrade the
performance of the filter or even cause the filter to
diverge. Some adaptive approaches should be done to
compensates the effect of inaccurate dynamic model by
rescaling the state covariance matrix during prediction.
By using the theory of linear matrix inequalities intro-
duced by Boyd et al. [1], Subrahmanya and Shin [2] have
proposed an adaptive method to determine the upper

bound for the DDF and demonstrated the superior per-
formance as compared to the standard DDF. Applying the
same method, this section provided the adaptive version
of traditional Kalman filter.

Definition 1. For any two square matrices A and B, if A�B

is a positive definite (positive semi-definite) matrix, then
we have A4B ðAZBÞ. Moreover, A is an upper bound for B

if and only if AZB.

Here we consider the modified state transition equa-
tion of (1) as

xk ¼ f ðxk�1ÞþDf þGwk�1 ð3Þ

where Df is the bounded modeling error which assumed
to satisfy JDf J1rdðdZ0Þ.

Suppose we have the an upper bound of actual state
covariance P(0) at time instant zero, as P̂

u
ð0Þ. Subrahmanya

and Shin [2] have derived the upper bounds P
u
ðkÞ and

P̂
u
ðkÞ, i.e. the upper bound for a priori and posteriori state

covariance at time instant k, sequentially given that
P̂

u
ðkÞZE½ðxk�x̂kÞðxk�x̂kÞ

T
�. The recursive adaptive proce-

dure is given as:
Using states Eq. (3), the parametric form of the a priori

state covariance upper bound can be given by

P
u
ðkÞ ¼ lkPðkÞþa trðP̂

u
ðk�1ÞÞIþbI ð4Þ

where PðkÞ is the state covariance prediction using the
typical propagating equation. Coefficients lk, a and b are
suitably defined parameters which can be calculated, and
trð�Þ denotes the trace operation of matrix ð�Þ. Also I

denotes identical matrix. The coefficients a and b may
be considered offline tuning parameters while lk is
adaptively estimated at each filter step by solving

lk ¼min
eZ1

e ð5Þ

such that eHPðkÞHTþRkþHða trðP̂
u
ðk�1ÞÞþbÞHT

ZP
0

y ðkÞ

and P
0

yðkÞ is the unbiased estimation of the output
covariance matrix, PyðkÞ ¼HP

u
ðkÞHTþRk, given by

P
0

y ðkÞ ¼
gð1Þgð1ÞT , k¼ 1

P
0

y ðk�1ÞþrgðkÞgðkÞT

rþ1 , k41

8<
: ð6Þ

The symbol gðkÞ denotes the innovation at time k. The
parameter r determines the weighting given to current
data in determining the noise covariance. Obviously, the
unbiased estimation of P

0

yðkÞ in the form of Eq. (6) is
susceptible to outliers in the innovations and a failure
detection approach should be adopted in case of filter
deteriorated by wrong residual information. Here we use
an outlier rejection rule by means of chi-square statistical
hypothesis test which is based on the confidence regions
associated with filter residual, and compared it to a
recomputed threshold.

Bar-Shalom [12] has demonstrated that when there is
no failure of sensor measurement, then we have

gðiÞ �N ð0,PyðiÞ ¼HP
u
ðiÞHTþRðiÞÞ, i¼ 2,3,4, . . . ,k ð7Þ

Moreover, a failure at time k will cause the expectation
of gðkÞ to become non-zero and/or its covariance
larger than HP

u
ðiÞHTþRðiÞ. Thus, failure detection can be
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