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a b s t r a c t

In the framework of the elliptic restricted three-body problem we develop an analytical

theory for spacecraft motion close to Mercury. Besides the perturbations due to the

gravity of the Sun and Mercury and the eccentricity of Mercury’s orbit around the Sun,

i.e., the elliptic restricted three-body problem, the theory includes the effects of the

oblateness and the possible latitudinal asymmetry of Mercury, and is valid for any

eccentricity of the spacecraft’s orbit. The initial Hamiltonian defines a non-autonomous

but periodic dynamical system of two degrees of freedom. The mean motion of the

spacecraft and the time are averaged using two successive Lie–Deprit transformations.

The resulting Hamiltonian defines a one degree of freedom system and depends upon

three essential parameters. When the latitudinal asymmetry coefficient vanishes the

flow of this system is entirely analyzed through the discussion of the occurrence of its

(relative) equilibria and bifurcations in accordance with the parameters the problem

depends upon. Frozen orbits of the initial system together with their stability are

obtained related to the relative equilibria. If the latitudinal asymmetry of Mercury is

taken into account, the equatorial symmetry of the problem is broken and introduces

important changes in the dynamics. A variety of tests show a very good agreement

between averaged and non-averaged models, and the reliability of the theory is further

checked by performing long-term integrations in ephemeris.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Analytical theories for mission designing of artificial
satellites normally rest on simplified models that capture
the majority of the dynamics. Thus, besides the Keplerian
attraction, it is common to consider either the inhomo-
geneities of the potential of the central body, for instance
for earth artificial satellites, or the third-body perturba-
tion, e.g. for interplanetary missions, or a combination of
both effects, as in the case of science missions about
planetary satellites. The long-term dynamics reveals after

averaging, and a full knowledge of the long-term
dynamics is quite useful for mission-designing purposes.

In most cases it is enough to take the third-body
perturbation in the Hill problem or the circular restricted
three-body approximation—both models assuming the
circularity of the primaries’ orbit in its relative motion.
However, the circular approximation does not fit to the
case of Mercury, whose orbit around the Sun clearly
exhibits a non-negligible eccentricity. Hence, the dy-
namics around Mercury must be studied in the context
of the elliptic restricted three-body problem (ERTBP) [1] in
spite of this model introduces a time dependence in the
motion of the primaries. The ERTBP increases the number
of degrees of freedom of the problem when compared
with the circular approximation, and the extra degree of
freedom must also be removed in the study of the long-
term dynamics.
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The importance of including the eccentricity of the
orbit of Mercury manifests in the first-order corrections
related to the time averaging, as it has been recently
shown [2]. However, to our knowledge, an analytical
theory including the combined effects of the ERTBP and
the non-spherical mass distribution of Mercury has not
been considered yet. Because Mercury has a known
oblateness with important effects on orbit stability and,
probably, a latitudinal asymmetry without significant
effects on stability but with effects on the shape of the
science orbit that may be important, we feel compelled to
develop a theory including both J2 and J3 harmonic
coefficients of Mercury’s gravitational potential, and the
Sun gravitational perturbation in the ERTBP approxima-
tion. We call this variant of the ERTBP the zonal elliptic
restricted three-body problem (ZERTBP).

The ZERTBP is Hamiltonian and, after formulating it as
a perturbed two-body problem, the long-term behavior is
studied by averaging. However, we depart from the
classical approach of using the Lagrange planetary
equations of an averaged perturbing function for describ-
ing the long-term dynamics. On the contrary, we use
modern perturbation theory that besides the averaged
equations also provides the transformation equations
between averaged and non-averaged problems—equa-
tions that are essential to recover the short- and long-
period effects lost in the averaging.

The theory is stepwise constructed by using Lie
transforms [3]. The subtleties in the procedure introduced
by the time dependency of the Hamiltonian are easily
avoided by moving first to a higher dimensional problem
using the homogeneous formalism [4]. This formalism
assigns to the time the character of a new canonical
variable. Then, we perform a Delaunay normalization [5]
to remove the short-period effects associated with the
mean anomaly of the orbiter. The subsequent elimination
of the time by means of Lie transforms produces also the
removal of the argument of the node, at least up to the
third order of the theory—as it happened to the cometary
and lunar cases of the ERTBP [6,2]. The resulting system is
integrable and is discussed in terms of the spacecraft’s
mean elements. Specifically, the flow of the eccentricity
vector, which decouples from the other mean elements,
shows the existence of a variety of frozen orbits that
might be useful in mission design.

When applying the analytical theory to the Sun–
Mercury system we find a very good agreement between
averaged and non-averaged models. But to further test the
usefulness of our results, for a selected set of orbits, we
propagate the initial conditions computed from the
analytical theory in full ephemeris, using JPL files. The
long-term propagations show that the analytical theory
provides an accurate approximation of the real dynamics
about Mercury.

2. Dynamical model

With the Sun–Mercury system in our mind, we tackle
the motion of a massless point S (the spacecraft) around
an axially symmetric rigid body m (Mercury) and under

the gravitational attraction of a distant massive point M

(the Sun). This model is an extension to the Lunar case of
the ERTBP [7], and may be useful in analyzing the motion
of a spacecraft around a planet or a planetary satellite.

The derivation of the model below follows closely the
approach of [2], and we provide it for the sake of
completeness.

2.1. Relative motion

Let ðO;X;Y ; ZÞ be the inertial frame of Fig. 1: the ðX;YÞ
plane is defined by the motion of the primaries m and M,
of masses m and M, respectively, and the Z axis is in the
direction of its angular momentum vector. The Newtonian
motion of S is given by

d2R

dt2
¼ rSVðrÞ �

GM

q3
q; ð1Þ

where R ¼ ~OS, r ¼ ~mS, q ¼ ~MS, q ¼ JqJ, V is the
gravitational potential of m and G is the gravitational
constant. The motion of S relative to m is

d2
ðr � kqÞ

dt2
¼ rSVðrÞ � GM

r � q

Jr � qJ3
; ð2Þ

where q ¼ ~mM ¼ r � q, and k is the ratio mass of M to the
total mass of the system k ¼ M=ðM þmÞ.

If m and M are far enough away to neglect the effects of
the gravitational harmonics of m on the motion of M, we
find the two-body problem

d2q

dt2
¼ �

GðmþMÞ

r3
q; r ¼ að1� e2Þ

1þ e cos fM
; ð3Þ

where r ¼ JqJ, the constants a and e are the semimajor
axis and eccentricity of the Keplerian orbit, and fM is the
true anomaly of the relative motion of M with respect to
m. Therefore,

d2r

dt2
¼ rSVðrÞ � GM

r � q

Jr � qJ3
þ

q

r3

 !
: ð4Þ

2.2. Hamiltonian formulation

Under this approximation, the motion of the spacecraft
S is described by the Hamiltonian

K ¼ 1

2
ðu � uÞ �

Gm

r
� Pðr;qÞ; ð5Þ

where the conjugate momentum u to r is velocity in the
inertial frame u ¼ dr=dt, and the perturbing function

P ¼ Rm þ RM ð6Þ
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Fig. 1. Zonal elliptic restricted three-body problem.
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